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Abstract 
This study serves three purposes: (i) to review appropriate metrics for life safety (ii), to provide the outline of a 
robust mathematical framework quantifying and comparing risk safety metrics, and (iii) to provide upper bounds 
for aggregate measures of risk. In recent decades, the significant increase in seismicity caused by anthropogenic 
activities such as hydraulic fracturing, fluid injections, and mining, has posed the challenge of establishing a 
framework governing the risks. Risk metrics, which provide the baseline for risk management and decision-
making, are a pivotal component of the risk governance framework.  There is a broad spectrum of metrics that 
can be implemented; however, all were developed for rather different disciplines. In this study, we select the 
ones that are more closely related to the context of induced seismicity. Next, we introduce a general 
mathematical framework to define generalized risk metrics, which is based on the concept of norms in functional 
analysis. This framework allows a uniform comparison of different individual and societal risk metrics, and 
comparison across different activities and technologies. The second part of the paper focuses on the 
computational framework for the calculation of individual and societal risk. The framework is based on the well-
established PSHA analysis and the PEER probabilistic performance-based seismic evaluation framework. The 
final part of the paper deals with the challenge of aggregate risk measures by providing upper bounds that can be 
compared with prescribed life safety criteria.   
 
Key words: risk metrics, induced seismicity, risk assessment, aggregate risk 
 



16th World Conference on Earthquake, 16WCEE 2017 
Santiago Chile, January 9th to 13th 2017  

1. Introduction 
 
The significant increase in seismicity, caused by anthropogenic activities such as hydraulic fracturing, fluid 
injections, and mining, has posed the challenge of establishing a risk governance framework to manage the risk 
related to such activities. One of the main differences between natural seismicity and induced seismicity is that 
while the first one is only related to natural processes, the second one is a combination of anthropogenic 
activities and natural processes. When considering hazardous anthropogenic activities, the first major distinction 
is between physical and non-physical risk. Examples of non-physical risk are vibrations felt, noise, public 
campaign against the project, NIMBI, etc. These risks are difficult, and in some cases impossible, to quantify. 
Within this setting, the view presented here maintains that an effective approach should gravitate towards risk 
mitigation rather than risk assessment.  Nevertheless, the physical risk faced by the exposed communities must 
be quantitatively assessed. In a classical protocol for anthropogenic hazardous activities, the physical risk is 
divided into two major categories, i.e., fatalities and injuries, and economic losses. Thus, any risk analysis for 
induced seismicity should encompass both life safety and economical risk. Injury and fatality risk is generally 
assessed through the computation of the individual and societal risks, while economic risk is based on loss 
curves. In the induced seismicity case, injury and fatality risk is essentially related to building safety. However, 
building safety is regulated throughout building codes that do not explicitly account for individual and societal 
risks. For a given structure, building codes define acceptable levels of probability of structural failure [1], which 
is either expressed as annual probability of failure or probability of failure over the life time of the facility.  

Therefore, there is a need to establish a framework to build a regulatory policy for induced seismicity risks. 
Within this task, risk metrics are the fundamental tools to measure risk, and to set safety standards for decision 
making.  Since the risk metrics are necessarily an output of a risk analysis and are a required input for the 
decision making process, it is important that all the parties involved agree on their selection. Ideally, this 
processes should be undertaken prior risk analysis, since the outcomes are affected by the chosen metrics. For 
the sake of simplicity and synthesis, this paper focuses only on risk metrics for injuries and fatalities. However, 
the concepts for threating injury and fatality risk can be easily extended to economic risks.  

The first part of the paper focuses on a critical review of a selected set of existing risk metrics for individual 
and societal risk. The review is mostly based on the work of Jonkman et al. [2].  Next, we introduce a 
mathematical framework based on concepts of functional analysis, which allows to define generalized risk 
metrics. Metrics defined within this framework are unit consistent (i.e. all expressed with the same chosen units), 
and convex. The convexity property is of particular importance for determining upper bounds for aggregate risk, 
and for risk optimization problems since they guarantee a unique optimum point.  

The second part of this paper outlines a computational framework for the calculation of individual and 
societal risk. The suggested framework is based on the combination of classical probabilistic seismic hazard 
analysis (PSHA) analysis [3] and PEER (Pacific Earthquake Engineering Research) Center probabilistic 
performance-based seismic evaluation framework [4]. However, the focus of this study gravitates more towards 
the second component.  It is shown that individual risk can be computed directly within this framework, 
although important challenges are still an open research topic. In particular, the hazard component of induced 
seismicity is inherently a time-non-stationary problem, while the natural seismicity is usually regarded as a time 
stationary problem. Moreover, the vulnerability part still represents an open challenge since the state of art 
literature focuses on macro-seismic (e.g. [5]), not micro-seismic, reliability analysis.  

While the individual risk is a point-wise risk measure, societal risk is inherently a spatial aggregate risk 
measure. Then, the last part of the paper deals with the calculation of aggregate risk measures. When aggregate 
injuries and fatalities (or economical losses) are of interest, we essentially consider the problem of summing 
spatially correlated random variables. In this last part, we outline two upper bounds for aggregate fatalities or 
losses derived directly from the local marginal distributions of fatalities or losses. It is shown that any convex 
risk metric applied on the aggregate upper bound represents also an upper bound to the true risk. These risk 
upper bounds can be checked versus predefined risk safety thresholds.  
 
 

2 



16th World Conference on Earthquake, 16WCEE 2017 
Santiago Chile, January 9th to 13th 2017  

2. Metrics for injury and fatality risk 
In this section, we review the most common metrics for injury and fatality risks. Risk metrics are the 

principal tool for quantitative safety risk assessments, decision making, risk communication, and regulatory 
frameworks. In particular, in the latter, the risk metrics play a key role in setting acceptable risk levels and 
acceptance criteria in the standards. Generally, a risk metric is a mathematical mapping of the consequence of an 
event and its probability of occurrence,  

ℛ = 𝜑(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒,𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦), (1) 
where ℛ is the risk measure, and 𝜑(⋅) represents a defined mapping. In this study we focus on quantitative risk 
measures for injuries and fatalities and distinguish between individual risk and societal risk.  
 
2.1 Individual risk metrics  
 
Individual risk is the annual frequency at which a statistically average individual is expected to experience death 
or a given level of injury from the realization of a given hazard [7]. In this case, the consequence is a categorical 
variable, here named 𝐼𝐿, expressing different injury severity levels. Normally, the probability distribution of 𝐼𝐿 
is a multinomial with parameters 𝜋𝑖𝑙 = 𝑃(𝐼𝐿 = 𝑖𝑙), which represent the probability of observing a specific injury 
level.  

For a prescribed injury level 𝑖𝑙 and a given hazard intensity measure, here denoted as 𝑖𝑚, the individual 
risk is ideally expressed as  

ℛ𝐼𝑅 = � 𝑃(𝐼𝐿 = 𝑖𝑙|𝑖𝑚)
𝑖𝑚

|𝑑𝐺𝐼𝑀| = 𝜋𝑖𝑙 = 𝑃(𝐼𝐿 = 𝑖𝑙), (2) 

where 𝑃(𝐼𝐿 = 𝑖𝑙|ℎ) is the conditional probability of observing the injury level 𝑖𝑙 given a hazard intensity 𝑖𝑚, 
𝐺𝐻(ℎ) = 1 − 𝐹𝐻(ℎ) is the complementary cumulative distribution function (CCDF) of the hazard intensity, and 
𝐹𝐻(ℎ) the cumulative distribution function (CDF) of the hazard intensity.  

The probability of a given injury level is often conditioned to the damage state of a structure, D, rather 
than to the hazard level 𝑖𝑚. In this case, the individual risk can be written as    

ℛ𝐼𝑅 = �𝑃(𝐼𝐿 = 𝑖𝑙|𝑑)𝑃(𝐷 = 𝑑) = 𝜋𝑖𝑙 = 𝑃(𝐼𝐿 = 𝑖𝑙)
𝑑

. (3) 

In (3), we assume an implicit dependence of the damage states from the hazard.  
Equations (2) and (3) do not account for whether the individual is actually physically in the proximity of 

the hazardous area. In [6], a slightly different version of (2) and (3) is proposed to account for the portion of the 
time that a person is present in the hazardous area. This is simply derived by multiplying (2) or (3) by the 
probability of a statistically average person is in the hazardous area in the course of one year. The individual risk 
is usually represented by iso-risk contour plots to facilitate land-use planning applications (Fig. 1.I).  There are 
several others individual risk metrics, which differ depending on the application field. Here, we selected the one 
that is often used in land-use planning, and adopt it as appropriate for decisions concerning projects associated 
with induced seismicity. For a comprehensive review, the reader should consult [8].  

The life-safety based risk regulations set individual risk acceptable criteria, which vary given the nature of 
the hazard and the exposed individuals. Individual risk limits are enforced to ensure that persons living in 
proximity or working either at or close to a hazardous activity are not exposed to an unacceptable risk. The 
individual risk criteria can set an absolute limit (by considering a statistically average person), or specify 
separate thresholds for the public and the most exposed personnel working at the activity. An example of 
absolute criteria is the limit ℛIR ≤ 10−6(per year) set by the Dutch Ministry of Housing, Spatial planning and 
Environment (VROM) for new installations in populated areas [2]. An example for the other criteria is given by 
the safety requirements for liquefied natural gas industry which set ℛIR ≤ 10−4 for the employees and ℛIR ≤
10−5 for the population. Within the field of technologies related to induced seismicity, no regulatory standards 
exist yet. To the best of our knowledge, the only recommended limit is ℛIR ≤ 10−5 , as indicated by the 
Commissie Meijdam in the Hazard and Risk Assessment for Induced Seismicity in Groningen, 2015 [9]. 
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Figure1 I) Individual risk, iso-risk contour plots II) Societal risk, (Adaptation from [2]) 

2.2 Societal risk metrics  
 
Societal risk is defined as the relationship between the frequency and the number of people suffering a given 
level of injury (or dying) from the realization of specified hazards [9]. Whereas the individual risk mirrors the 
severity of the hazards, it does not account for the number of individuals exposed to the hazard (Fig. 1). The 
societal risk aims to account for this effect by considering all exposed individuals present in the proximity of the 
hazardous activity. It is clear that while the individual risk is a point-wise measure, the societal risk involves an 
area/density integration.  This allows a measure that better accounts for the risks of calamitous accidents, which 
may impact a large number of persons at once. Hereafter for simplicity, we refer only to fatality societal risk, as 
usually done in practice. It is clear that the same metrics can be applied to different level of injuries.  

Some commonly used risk societal risk metrics can be derived directly from the individual risk maps. A 
first example of these metrics is the aggregate weighted risk (AWR), [10], which is defined as  

ℛ𝐴𝑊𝑅 = ��ℛ𝐼𝑅
𝐴

(𝑥,𝑦)𝜌ℎ(𝑥,𝑦)𝑑𝑥𝑑𝑦, (4) 

where ℛ𝐼𝑅(𝑥,𝑦) is the individual risk  per year at a given location (𝑥,𝑦), 𝜌ℎ(𝑥,𝑦) is the number of houses for 
that given location, and 𝐴 is the total area of interest. In common practice, 𝐴 is divided into a finite number of 
zones, usually defined by the exposure asset, and Eq. (4) is computed as sum ℛ𝐴𝑊𝑅 = ∑ ℛ𝐼𝑅(𝑗)𝜌ℎ(𝑗)𝑗 , where 
𝜌ℎ(𝑗) is the number of houses for the 𝑗P

th zone.  
 Laheij et al. [11] define the societal risk as the expected number of fatalities per year 

ℛ𝑆𝑅 = 𝐸[𝑁] = ��ℛ𝐼𝑅
𝐴

(𝑥, 𝑦)𝜌𝑝(𝑥,𝑦)𝑑𝑥𝑑𝑦, (5) 

where 𝑁 is a random variable representing the number of fatalities per year,  𝐸[⋅] is the expectation operator, and 
𝜌𝑝(𝑥,𝑦) is the population density at a given location (𝑥,𝑦).  
 Equations (4) and (5), are based on individual risk maps, which are computed point-wise. However, most 
of the societal risk metrics used in practice are defined based on the CCDF of the number of fatalities per year. 
The relationship between the iso-risk contours and the CCDF of the number of fatalities is rather difficult to 
obtain because it depends on the probabilistic spatial correlation of the problem. Generally, the CCDF of the 
number of fatalities, here denoted with 𝐺𝑁 , is computed via numerical methods and represented graphically 
using the so-called FN-curves. FN-curves are exactly the CCDF of the number of fatalities per year, i.e.  

𝐺𝑁(𝑥) = 1 − 𝑃(𝑁 > 𝑥) = 1 − 𝐹𝑁(𝑥) = � 𝑑𝐹𝑁
∞

𝑥
(𝑥), (6) 

where 𝐹𝑁(𝑥)  is the cumulative distribution function (CDF) of the number of fatalities per year. The 
complementary cumulative form is preferred to ensure monotonically decreasing curves. The simplest and 
widely used societal risk metric is the expected number of fatalities per year, also known as potential loss of life 
(PLL),  

ℛ𝑆𝑅𝑃𝐿𝐿 = 𝐸[𝑁] = � 𝑥𝑑𝐹𝑁
∞

0
(𝑥) = −� 𝑥𝑑𝐺𝑁

∞

0
(𝑥) = −[𝑥𝐺𝑁(𝑥)]0∞ + � 𝐺𝑁(𝑥)𝑑𝑛

∞

0
= � 𝐺𝑁(𝑥)𝑑𝑛

∞

0
, (7) 
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where it is assumed that lim𝑥→∞ 𝑥𝐺𝑁(𝑥) =0, a condition that is always satisfied since the total number of 
persons present in the area, 𝑛𝑡𝑜𝑡, is clearly an upper bound of 𝐺𝑁(𝑥). By systematically and partially integrating 
(7), it is easy to show that  

𝐸[𝑁𝑚] = � 𝑥𝑚𝑑𝐹𝑁
∞

0
(𝑥) = � 𝑥𝑚|𝑑𝐺𝑁

∞

0
(𝑥)| = 𝑚� 𝑥𝑚−1𝐺𝑁(𝑥)𝑑𝑥

∞

0
. (8) 

Noteworthy: the area under the FN curve is the expected number of fatalities, and the 𝑚𝑡ℎ moment of 𝑁 is a 
weighted  (𝑚 − 1)𝑡ℎ  moment of the FN curve.  
 In [12], the UK’s health and safety executive (HSE)  the societal risk is defined as   

ℛ𝑆𝑅𝐻𝑆𝐸 = � 𝑥𝐺𝑁
∞

0
(𝑥)𝑑𝑛. (9) 

Given (8) it is easy to see that ℛ𝑆𝑅𝐻𝑆𝐸 = 1/2𝐸[𝑁2]. Moreover, it is well known that Var[𝑁] = 𝐸[𝑁2] − 𝐸2[𝑁], 
where Var[⋅] is the variance operator, so that (8) can be written as  

ℛ𝑆𝑅𝐻𝑆𝐸 =
1
2

(Var[𝑁] + 𝐸[𝑁2]). (10) 

A similar risk metric, named total risk measure, is proposed by Vrijling at al. [13] as  

ℛ𝑆𝑅𝑇𝑅 = 𝐸[𝑁] + 𝑘𝜎(𝑁), (11) 

where 𝜎(⋅) = �Var[⋅] is the standard deviation operator, and 𝑘 is a risk aversion factor. 
Another version for the societal risk is the so named COMAH risk metric [14] which is defined as 

ℛ𝑆𝑅𝐶𝑂𝑀𝐴𝐶𝐻 = � 𝑥𝛼𝑑𝐹𝑁
∞

0
(𝑥), (12) 

where 𝛼 ≥ 1 is a tail-weight factor which lends weight to  𝐺𝑁(𝑥)’s right tail. Essentially, 𝛼  represents the 
aversion to large accidents, which might involve a large number of persons. The HSE suggests a practical value 
of 𝛼 = 1.4. Observe that for 𝛼 ∈ ℕ+, (12) is equivalent to (8).  

Bohnenblust [6] proposes the following expression as a societal risk metric 

ℛ𝑆𝑅𝑃𝐶 = � 𝑥𝑈(𝑥)𝑑𝐹𝑁
∞

0
(𝑥), (13) 

where 𝑈(𝑥) is a monotonic increasing function named the risk aversion function. This risk metric is also known 
as a perceived collecting risk. A similar metric, which encompasses both a tail-weight factor, 𝛼, and a risk 
aversion function, 𝜙(𝑥), is proposed by Kroon and Hoej [15]  

ℛ𝑆𝑅𝑈 = � 𝑥𝛼𝑈(𝑥)𝑑𝐹𝑁
∞

0
(𝑥). (14) 

The authors named (14) as expected disutility of the system; (14) can be read as generalized metric and different 
authors propose different values for 𝛼 (commonly 𝛼 ∈ [1, 2]), and different expressions for the function 𝑈(𝑥). 
 Although all of these risk metrics are attempts to quantify the societal risks, they cannot be compared 
because they are defined in different units. For example, (7) and (11) are expressed in the same units, which are 
the number of fatalities; however, all the other metrics have their own units, which are difficult to pinpoint. This 
is not only an obstacle for a direct comparison of the metrics, but also for a cross-comparison of the risk between 
different hazardous activities. Moreover, there is a lack of a robust mathematical framework, which could be 
useful to address critical issues such as the convexity of the metrics. For example, the convexity of (12), (13), 
and (14) depends both from the choice of 𝛼 and 𝑈(𝑥).  

In the next subsection, we will tackle these issues by proposing a consistent risk metric framework, which 
is based on simple function space concepts. The purpose is not to define a new risk metric, but rather a consistent 
mathematical framework, which allows the parties involved in the decision-making process to choose a suitable 
metric. 

 
 

 
2.2 Generalized risk metric for societal risk  
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A framework for induced seismicity risk metrics has the following desirable features:  

• Dimension consistency, with units that are easy to identify, e.g. number of fatalities or losses.  
• Simplicity: to be easily adopted and used by different communities.  
• Flexibility:  to include a tail-weight factor and/or a risk aversion function.  
• Mathematical robustness, i.e., based on functional spaces concepts.  
• Convexity, which offers a great advantage in defining upper bounds and in risk optimization problems.  
To fulfill this list, we start by defining the functional space in which the mapping expressed in Eq. (1) is 

operating. For this purpose, consider the functional space ℒ𝐺𝑁
𝑃 (ℝ+) of 𝑝-integrable functions with respect to 

𝑓𝑁(𝑥) = |𝑑𝐺𝑁(𝑥)/𝑑𝑥|, i.e.  

ℒ𝐺𝑁
𝑝 (ℝ+) = �𝜙(𝑥): 𝑥 ∈ ℝ+ → ℝ+,�|𝜙(𝑥)|𝑝

𝑥
|𝑑𝐺𝑁(𝑥)| < ∞� , for 𝑝 ≥ 1  (15) 

where 𝜙(𝑥)  is a generic function, and 𝑓𝑁(𝑥)  is the probability density function (PDF) of the number of 
fatalities.. It follows that the only requirement for 𝜙(𝑥) is to be finite for 𝑥 ∈ [0,𝑛𝑡𝑜𝑡]. Given this, we define the 
𝑝-norm of a chosen function 𝜙(𝑥) in the functional space ℒ𝐺𝑁

𝑝 (ℝ+), as a societal risk metric, i.e.  

ℛ𝑆𝑅𝑝[𝜙(𝑥)] = ‖𝜙(𝑥)‖𝑝,𝐺𝑛   = ��|𝜙(𝑥)|𝑝
𝑥

|𝑑𝐺𝑁(𝑥)|�

1
𝑝

,   for 𝑥 ∈ ℝ+, and 𝑝 ≥ 1. (16) 

The mathematical properties of this metric are equivalent to the properties of any 𝑝-norm defined in a ℒ𝐺
𝑝 space, 

which are: 
• Scalability: ℛ𝑆𝑅𝑝[𝑎𝜙(𝑥)] = |𝑎|ℛ𝑆𝑅𝑝[𝜙(𝑥)]. 
• Subadditivity (convexity): ℛ𝑆𝑅𝑝[𝜙(𝑥) + 𝛾(𝑥)] ≤ ℛ𝑆𝑅𝑝[𝜙(𝑥)] + ℛ𝑆𝑅𝑝[𝛾(𝑥)].  
• Separate points:  ℛ𝑆𝑅𝑝[𝑓(𝑥)] = 0 ⟺ 𝑓(𝑥) = 0. 

Moreover, the rank of the norm 𝑝 is equivalent to the tail factor 𝛼, and 𝜙(𝑥) can arbitrarily include a risk 
aversion function. An important observation is that (16) is generally unit consistent. It follows that a comparison 
between different metrics and different hazardous activities is consistent. We can easily rewrite all the previous 
norms within this framework. For example, (7) is simply  

ℛ𝑆𝑅𝑃𝐿𝐿 = 𝐸[𝑁] = ‖𝑥‖1,𝐺𝑛 = ℛ𝑆𝑅𝑝=1[𝑥], (17) 

and (9) 

ℛ𝑆𝑅𝐻𝑆𝐸 = 2 �ℛ𝑆𝑅𝑝=2[𝑥]�
2

= 2�‖𝑥‖2,𝐺𝑛�
2     . (18) 

As we already mentioned,  (17) and  (18) are not unit comparable; however, within the ℒ𝐺𝑁
𝑝  space we can 

redefine each metric in consistent units (e.g. number of fatalities). For example, a unit-consistent version of (18) 
is simply  

ℛ𝑆𝑅𝐻𝑆𝐸
𝑐 = ℛ𝑆𝑅𝑝=2�√2𝑥� = √2‖𝑥‖2,𝐺𝑛, (19) 

where the suffix ⋅𝑐 is used to indicate a unit consistent metric. Following the same logic, we can define the unit-
consistent version of ℛ𝑆𝑅𝐶𝑂𝑀𝐴𝐶𝐻  as    

ℛ𝑆𝑅𝐶𝑂𝑀𝐴𝐶𝐻
𝑐 = ℛ𝑆𝑅𝑝[𝑥] = ‖𝑥‖𝑝,𝐺𝑛, (20) 

where 𝑝 ≥ 1, is equivalent to the tail factor 𝛼.  The unit consistent version of the perceiving risk ℛ𝑆𝑅𝑃𝐶  is  

ℛ𝑆𝑅𝑃𝐶
𝑐 = ℛ𝑆𝑅𝑝=1[𝑥𝑈(𝑥)] = ‖𝑥𝑈(𝑥)‖1,𝐺𝑛, (21) 

and the unit consistent version of ℛ𝑆𝑅𝑈  is 
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ℛ𝑆𝑅𝑈
𝑐 = ℛ𝑆𝑅𝑝 �𝑥𝑈

1
𝑝(𝑥)� = �𝑥𝑈

1
𝑝 (𝑥)�

𝑝,𝐺𝑛
. (22) 

Finally, it is easy to see that  ℛ𝑆𝑅𝑇𝑅  is  

ℛ𝑆𝑅𝑇𝑅
𝑐 = ℛ𝑆𝑅𝑇𝑅 = ‖𝑥‖1,𝐺𝑛 + 𝑘�(𝑥 − ‖𝑥‖1,𝐺𝑛)�

2,𝐺𝑛
. (23) 

All metrics are legitimate choices for quantifying societal risk; however, we suggest adopting a consistent 
metric, i.e., one of the (17)-(23) equations. Moreover, the introduced framework allows a wide range of 
flexibility for choosing both a tail factor (here equivalent to 𝑝) and a risk aversion function 𝑈(𝑥).  

3. Individual and societal risk computation for induced seismicity  
 
In the previous sections we reviewed a list of common risk metrics to address individual and societal risk. In this 
section, we focus on the general framework for their computation. In the case of induced seismicity, individual 
and societal risks are direct consequences of damages and/or failures of building structures due to seismic 
activities. In fact, risk standards for structural safety are mostly regulated through building codes. Most of them 
do not specifically address the risk for individuals, but rather prescribe an acceptable level of probability of 
structural failure. This can be either an annual probability of failure, or the probability of failure over the lifetime 
of the structure. Consequently, the first step for individual and societal risk computation is the quantification of 
the likelihood of potential structural damages, followed by the transformation of this likelihood into the 
likelihood of injuries or fatalities. Therefore, it is natural to use the well established procedures of earthquake 
engineering to estimate both the likelihood of the hazard and the building structural failure probabilities. The 
classical probabilistic seismic hazard analysis (PSHA) [3] is the primary tool to estimate the likelihood of the 
hazard component. However, because of the inherent non-stationary nature of induced seismicity compared to 
the assumed stationary nature of natural seismicity, some adaptations are required. Time-dependent PSHA 
models have been studied [16,17,18]; however, they need to be tailored for each specific case. This is due to the 
significant, case-specific differences across earthquake occurrence models [19]. A thorough discussion of the 
probabilistic hazard computation for induced seismicity is beyond the scope of this paper, for which we suggest 
the following readings [18, 19].   

For a given structure, the well-established procedure to compute mean annual rates of a given decision 
variable is the PEER probabilistic performance-based seismic evaluation framework [18] 

𝜆(𝑑𝑣) = � � � 𝐺(𝑑𝑣|𝑑𝑔)|𝑑𝐺(𝑑𝑣|𝑑𝑔)|
𝑖𝑚𝑒𝑑𝑝𝑑𝑔

|𝑑𝐺(𝑑𝑔|𝑒𝑑𝑝)||𝑑𝐺(𝑒𝑑𝑝|𝑖𝑚)||𝑑𝜆(𝑖𝑚)|, (23) 

where 𝑖𝑚  is an hazard intensity measure (e.g., peak ground acceleration, peak ground velocity, spectral 
acceleration, etc.), 𝑒𝑑𝑝 is an engineering demand parameter (e.g., interstory drift, maximum displacement etc.), 
𝑑𝑔 is a damage grade measure (e.g., minor, medium extensive, collapse etc.), 𝑑𝑣 is a decision variable (e.g., 
number fatalities, monetary losses, etc.), 𝜆(𝑥) is a mean annual rate of events exceeding a given threshold, and 
𝐺(𝑦|𝑥)  =  𝑃 (𝑌 ≥  𝑦|𝑋 =  𝑥) is a conditional CCDF. Often in common practice, 𝑑𝑔 is a discrete variable that 
is related deterministically to 𝑒𝑑𝑝. For example, 𝑑𝑔𝐼 (damage grade I, equivalent to light damage) is defined by 
𝐸𝐷𝑃 ≥ 𝑢𝑦, where 𝑢𝑦 is a given threshold (e.g. the elastic displacement limit of the structural behavior of the 
structure), and 𝑑𝑔𝐼𝑉  (damage grade IV, equivalent to collapse) is defined by 𝑑𝑔𝐼𝑉 ≥ 𝑢𝑢 , where 𝑢𝑢  is the 
ultimate displacement threshold just before structural collapse occurs. Given this, (24) is usually used to 
compute mean annual rate of damage grade as 

𝜆(𝑑𝑔) = � 𝐺(𝑑𝑔|𝑖𝑚)
𝑖𝑚

|𝑑𝜆(𝑖𝑚)|, (24) 

where 𝐺(𝑑𝑔|𝑖𝑚) = 𝑃(𝐷𝐺 ≥ 𝑑𝑔|𝑖𝑚) = 𝑃(𝐸𝐷𝑃 ≥ 𝑢𝑢|𝑖𝑚)  is the fragility function, which represents the 
probability of exceeding a damage grade 𝑑𝑔, given a level of hazard 𝑖𝑚. In the last decades, extensive efforts 
have been conducted to compute fragility functions for natural seismicity and for a wide range of building 
structures and civil infrastructure system components. However, induced seismicity presents new challenges 
related to the combination of lower intensity vibrations and higher earthquakes rates. At the present time, 
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fragility functions for induced seismicity are still an open research topic.   
 The individual risk, ℛIR can be computed from (24) by following standard earthquake-injury classification 
(e.g. HAZUS 2003). In earthquake-injury classifications, each injury level occurrence probability is defined 
conditioned to a certain damage grade [20], i.e 𝑃(𝑖𝑙|𝑑𝑔). Given this, the mean annual rate of injury level 𝑖𝑙 is 
defined as   

𝜆(𝑖𝑙) = �� 𝑃(𝑖𝑙|𝑑𝑔)|𝑑𝐺(𝑑𝑔|𝑖𝑚)|
𝑖𝑚

|𝑑𝜆(𝑖𝑚)|.
𝑑𝑔

 (25) 

This rate of injury level can be scaled by the amount of time in a year an average person is present in the 
structure. Then, the rate can be transformed into annual probabilities by assuming a time recurrence model that 
follows a Poisson process with rate 𝜆(𝑖𝑙), i.e.   

ℛ𝐼𝑅 = 𝑃(𝐼𝐿 = 𝑖𝑙|𝑡 = [1 year]) = 1 − exp�−𝜆(𝑖𝑙)�. (26) 

When the intensity measure rate is time dependent, i.e, 𝜆(𝑖𝑚, 𝑡), the same framework applies to determine 
𝜆(𝑖𝑙, 𝑡). Then, by assuming a time recurrence model that follows an inhomogeneous Poisson process,  

ℛ𝐼𝑅(𝑇) = 𝑃(𝐼𝐿 = 𝑖𝑙|𝑡 = 𝑇) = 1 − exp�−� 𝜆(𝑖𝑙, 𝑡)𝑑𝑡
𝑇

0
�, (27) 

where 𝑇 is the observational time period. Observe that both (25) and (26) imply that all the uncertainties are 
ergodic, i.e. renewable. While this is generally a realistic assumption for natural seismicity, it is an open question 
for induced seismicity. It is shown [21] that the ergodic approximation inherent in (25) is an upper bound that 
converges to the true value for lower probabilities. For a thorough discussion of this topic, the reader should 
consult [21, 22]. 
 As stated in Section 2, the individual risk ℛ𝐼𝑅 is locally defined for a single individual and does not give 
information regarding the number of persons in proximity of the hazard. A first estimate of the societal risk is 
calculated by multiplying the individual risk by the average number of building occupants, and by integrating 
this procedure for the buildings present in the hazardous area (essentially Eq. (4)). However, this procedure 
neglects both the hazard spatial correlation and the injuries correlation. The hazard spatial correlation refers to 
the observation that ground motions intensities appear in geographical clusters, i.e. two neighboring locations 
most likely experience similar intensities measures. The injuries/fatalities correlation refers to the observation 
that injuries severity appears in clusters, e.g. collapses of high occupancy buildings lead to a highly concentrated 
number of fatalities. A second method to aggregate fatalities or losses is to divide the area of interest in zones 
based on the exposure of assets, and compute local FN or losses curves. Then, the aggregate FN/loss-curve is 
derived by summing random variables with prescribed marginal distributions. In the third method, the aggregate 
FN-curve is usually determined by simulations that use a spatial correlation model for the hazard component [23, 
24] and possibly a correctly correlated injury model.  

4. Upper bounds for aggregate societal risk  
 
When aggregate injuries and fatalities (or economic losses) are of interest, we essentially consider the problem 
of summing random variables. The random variables, here for simplicity denoted as 𝑋i, are either number of 
fatalities or losses for a given location, and  𝑋𝑖  is a vector of 𝑋i . Then, the random variable sum 𝑆 = ∑ 𝑋𝑖𝑖  
represents either the aggregate number of fatalities or the aggregate loss. In this section, we focus on the problem 
of determining lower and upper probabilistic bounds for the CCDF of the random variable 𝑆 when we know the 
marginal CCDF of 𝑋𝑖, but the joint distribution is either unspecified or costly to determine. Observe that the 
CCDFs are simply the local FN curves or loss curves that can be determined by state-of-art PSRA and risk 
analysis software (e.g. [25]).  
 A trivial but yet important observation must be made when aggregating fatalities and losses arising from sum 
of dependent random variables. The magnitude of importance of the correlation structure between 𝑿𝒊s is related 
to the selection of the risk metric. For example, if the expected number of fatalities (Eq. 7), or expected loss is of 
interest, the knowledge of the joint distribution of the 𝑿𝒊s is unnecessary.  In fact 𝑬[𝑺] = ∑ 𝑬[𝑿𝒊]𝒊  regardless of 
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the joint distribution of the 𝑿𝒊s. On the other hand, the joint distribution becomes increasingly important when 
the risk metrics is nonlinear, which is the case for all the other metrics of Section 2. In the following, we assume 
that the random variables are at most positively correlated. This is corroborated by physical evidence from 
seismic events, i.e., two closely spaced random variables are expected to have similar values, while sufficiently 
dispersed random variables are expected to have “more” independent values. 
 Since we assume that the random variables are positively correlated, a probabilistic lower bound for the 
aggregate CCDF is simply given by considering all the random variables statistically independent. Given this, 
we can write   

𝐺𝑆𝑙𝑏(𝑥) = ℱ−1[ℱ[𝐺𝐼(𝑥)](𝜔) ⋅ … ⋅ ℱ[𝐺𝑖(𝑥)](𝜔) ⋅ … ⋅ ℱ[𝑓𝑖(−𝑥)]](𝑥), (28) 
where 𝓕[⋅] indicates the Fourier transform operator, 𝑮𝒊(𝒙) is the CCDF of the random variable 𝑿𝒊, 𝑮𝑺𝒍𝒃(𝒙) is the 
CCDF of the random variable 𝑺, the suffix ⋅𝒍𝒃  and the underscore ⋅ stand for lower bound, 𝒇𝒊(𝒙) is the PDF of 
the random variable 𝑿𝒊 , and 𝑰 is the total number of locations. Eq. (28) is derived based on the following 
recursive relationship 𝑮𝒊+𝟏(𝒙) = 𝑮𝒊(𝒙) ∗ 𝒇𝒊−𝟏 (−𝒙) (where ∗ denotes convolution) for the sum of consecutive 
statistically independent random variables, and by using the Fourier transforms to convert convolutions into 
multiplications.  
 A first probabilistic upper bound for the sum of random variables with given marginal distribution and 
unknown joint distribution is given in the context of financial mathematics in [27, 28]. In order to determine the 
𝐺𝑆
𝑢𝑏(𝑥), we first need to provide the definition of convex order sense [27].  

Definition 1: The random variable 𝑆 precedes in the convex order sense the random variable 𝑆 , in notation 
𝑆 ≤𝐶𝑋 𝑆  if and only if1  

𝐸[𝑆] = 𝐸[ 𝑆], (29) 

and 

� 𝐺𝑆
∞

𝑥
�𝑥′�𝑑𝑥′ ≤ � 𝐺 𝑆

𝑢𝑏
∞

𝑥
�𝑥′�𝑑𝑥′ (30) 

Observe that Eq. (29) is a measure of the weight of the right tail of 𝑆  and 𝑆 . Moreover, since 𝐸[𝑆] =
∫ 𝐺𝑆
∞

0 �𝑥′�𝑑𝑥′, (30) implies that 𝐺𝑆(𝑥) and 𝐺 𝑆
𝑢𝑏(𝑥) should cross at least once. Shaked and Shanthikumar [29] 

have proven the following important relationship 

𝑆 ≤𝐶𝑋 𝑆 ⟺ 𝐸[𝜙(𝑆)] ≤ 𝐸�𝜙�𝑆��, (31) 

for all convex functions 𝜙(⋅), provided the expectation exists. Observe that since 𝐸[𝜙(𝑆)] = ∫ 𝜙(𝑆)|𝑑𝐺𝑆|∞

0  and 
the 𝑝-norms, ‖⋅‖𝑝,𝐺𝑆 , and ‖⋅‖𝑝,𝐺 𝑆

𝑢𝑏,  are convex functions defined in the spaces ℒ𝐺𝑆
𝑝 (ℝ+) and ℒ

𝐺 𝑆
𝑢𝑏

𝑝 (ℝ+), we can 

write the following relationship    

𝑆 ≤𝐶𝑋 𝑆 ⟹ ‖⋅‖𝑝,𝐺𝑆 ≤ ‖⋅‖𝑝,𝐺 𝑆
𝑢𝑏 . (32) 

This has an important implication for all the consistent risk metrics defined in Section 2; in fact, if they are 
applied on 𝑆, they represent an upper bound of the real risk. Observe that Eq. (32) is not a reversible implication, 
so 𝑝-norms cannot be used to imply convex order sense.  
 Goovaerts et al. (2000) have proven the following convex order relationship  

𝑆 = �𝑋𝑖 ≤𝐶𝑋

𝐼

𝑖=1

�𝐹𝑋𝑖
−1(𝑈)

𝐼

𝑖=1

≜ 𝑆, (33) 

where 𝑈 is a uniform random variable over the interval [0,1], and 𝐹𝑋𝑖
−1(⋅) is the inverse CDF of the 𝑋𝑖 random 

variable. Notice that the component of vector [𝐹𝑋1
−1(𝑈), … ,𝐹𝑋𝐼

−1(𝑈)] are highly dependent, since all of the 

1 The original definition involves two generic random variable 𝑋,𝑌. Here, we use  𝑆 and 𝑆 only to remark the final goal of 
the approximation.   
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components are non-decreasing functions of a single random variable. The joint probability distribution of (33) 
is known as the comonotonous joint distribution. It can be easily proven that the inverse CDF of a sum of 
comonotonous random variables is simply the sum of the inverse of the marginal. Then we can write 

𝐹𝑆
−1(𝑝) = �𝐹𝑋𝑖

−1(𝑝)
𝐼

𝑖=1

, (34) 

where, in this case, 𝑝 ∈ [0,1] is the percentile of the distribution (to not be confused with with the 𝑝-norm). 
Relationship (34) can be interpreted as the maximum risky combination for the sum of random variables with the 
prescribed marginal distributions and unknown correlation. Relationship (34) is  important, since  𝐺 𝑆

𝑢𝑏(𝑥) =
1 − (𝐹𝑆

−1(𝑝))−1 completely defines the ℒ
𝐺 𝑆
𝑢𝑏

𝑝 (ℝ+) space. It follows that any risk metric based on the framework 

of Section 2 and computed in the ℒ
𝐺 𝑆
𝑢𝑏

𝑝 (ℝ+) space is an upper bound of the real risk computed on the undefined 

ℒ𝐺𝑆
𝑝 (ℝ+)  space. As a consequence, if the upper bound is below a predefined safety margin, no further 

computation is required.  
 Relationship (34) is a sensible choice for approximating the unknown CCDF of 𝑆. However, there is an 
improved upper bound that can be derived when the following conditions apply: i) all the random variables 𝑋𝑖s 
are conditioned on a parent random variable, here named 𝑀, ii) all the conditional CCDF 𝐺𝑋𝑖|𝑀=𝑚 are known, 
and iii) the marginal 𝐺𝑀 is given. The parent random variable name, 𝑀, has been chosen since in seismic risk 
analysis the earthquake magnitude has exactly these characteristics. By defining the random variables 𝜓𝑖(𝑈,𝑀), 
where 𝜓𝑖(𝑢,𝑚) =  𝐹𝑋𝑖|𝑚

−1 (𝑢),  𝑈 is a uniform (0,1) distribution and statistically independent from 𝑀,  Dhaene et 
al. [27] have proven the following relationship 

𝑆 ≤𝐶𝑋 �  𝜓𝑖(𝑈,𝑀)
𝐼

𝑖=1

≜ 𝑆̿ ≤𝐶𝑋 𝑆. (35) 

 It can be also shown that [𝜓1(𝑈,𝑀), … ,𝜓𝑖(𝑈,𝑀), …𝜓𝐼(𝑈,𝑀)] is a series of comonotic random variables. It 
follows that  

𝐹𝑆̿|𝑀=𝑚
−1 (𝑝) = ∑ 𝐹𝑋𝑖|𝑀=𝑚

−1 (𝑝)𝐼
𝑖=1  with 𝑝 ∈ [0,1]  (36) 

and after inverting (36), we obtain the CCDF of 𝑆̿  as 

𝐺𝑆̿
𝑢𝑏(𝑥) = 1 −� 𝐹𝑆̿|𝑀=𝑚(𝑥)𝑑𝐹𝑀(𝑚)

∞

0
 

 
(37) 

Relationship (37) is an improved upper bound to the real societal risk. As we have seen above,  𝐺𝑆̿
𝑢𝑏(𝑥) 

completely defines a ℒ
𝐺 𝑆�
𝑢𝑏

𝑝 (ℝ+) space which is “closer” to the true ℒ𝐺𝑆
𝑝 (ℝ+) space. It follows that any risk metric 

based on the framework of Section 2 and computed in the ℒ
𝐺 𝑆�
𝑢𝑏

𝑝 (ℝ+) space is an improved upper bound of the 

true risk computed on the undefined ℒ𝐺𝑆
𝑝 (ℝ+) space. In practice, a first risk upper bound can be easily computed 

by computing any convex risk metric in the ℒ
𝐺 𝑆
𝑢𝑏

𝑝 (ℝ+) space. If this upper bound satisfies a predefined risk 

threshold, then no further computations are required.   

5. Conclusion   
 
The first part of this paper presented a short review of the commonly used risk metrics measuring individual and 
societal risk. It is shown that most of the metrics, which are derived from different disciplines, have different 
properties and units. This is an obstacle for a selection of a suitable metric for the field of interest, for metrics 
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with different units cannot be compared. Moreover, it limits cross-comparisons among different fields. To 
overcome this issue, we proposed a mathematical framework based on functional spaces. These spaces are 
defined with respect to the local FN or loss curve distributions, and they are equipped with a 𝑝-norm. We 
showed that the concept of 𝑝-norm can be used to define flexible, yet unit-consistent risk metrics. Risk metrics 
defined within this framework are convex. Convexity is a desirable property for many applications, such as risk 
aggregation or risk optimization problems, as allows for bounding the risk metrics.  
 In the second part of this paper, we proposed a framework for individual risk calculation based on the 
combination of PSHA analysis and the PEER probabilistic performance-based seismic evaluation framework. 
This combination is a standard procedure for probabilistic seismic risk analysis, where injury and fatality risk is 
not regulated in terms of individual or societal risk, but rather based on probabilities of failure of structures. For 
this reason, we outlined a simple adaptation to compute individual risk. Furthermore, we indicate the main 
shortcomings of the framework, which are related to the non-stationarity nature of the induced seismicity, and to 
the currently available structural fragility functions, which are calibrated for macro-seismic events. 
 Finally, in the last section, we address the problem of determining spatial aggregate risk measure such as 
societal risk. Often, aggregating risk arising from different sources boils down to the problem of determining the 
marginal distribution of a sum of correlated random variables. Generally, a spatial region of interest is divided 
into zones based on the asset exposure. Then, for each zone, local FN and loss distributions are computed. Based 
on these local marginal distributions we defined a series of comonotonous random variables, which precede the 
real original random variables in convex order.  The marginal of the sum of comonotonous random variables can 
be easily determined. It is shown that any convex risk metric expressed in the functional space defined with 
respect to the surrogate marginal is an upper bound of the real risk. An improved upper bound can be determined 
if the correlation structure of the problem can be defined. In particular, in seismic risk analyses, all the local FN 
or losses distributions can be conditioned to a parent random variable, which is the magnitude of the event. By 
following the same procedure of determining a series of conditional comonotonous random variables, we have 
shown that it is possible to obtain improved upper bounds for any convex risk metric expressed in the space 
defined by the improved surrogated distribution. Upper bounds to the real risk are important, for they can be 
checked against predefined safety thresholds.  
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