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Abstract 

An advanced statistical emulation-based approach to compute the probabilistic seismic demand is introduced here. The 

emulation approach, which is a version of kriging, uses a mean function as a first approximation of the mean conditional 

distribution of Engineering Demand Parameter given Intensity Measure (EDP|IM) and then models the approximation errors 

as a Gaussian Process (GP). The main advantage of the kriging emulator is its flexibility, as it does not impose a fixed 

mathematical form on the EDP|IM relationship as in other approaches (i.e. standard cloud method). In this study, a case-

study building representing the Special-Code vulnerability class, is analyzed at a high level of fidelity, namely nonlinear 

dynamic analysis. For the evaluation of the emulator, two different scenarios are considered, each corresponding to a 

different “assumed reality” represented by an artificially generated IM:EDP relationship derived from the sample of real 

analysis data. These “assumed realities” are used as a reference point to assess the performance of the emulation-based 

approach, and to compare against the outcomes of the standard cloud analysis. A number of input configurations are tested, 

utilizing two sampling processes (i.e. random and stratified sampling) and varying the number of training inputs. The 

outcomes of the current work show that the proposed statistical emulation-based approach, when calibrated with high 

fidelity analysis data and combined with the advanced IM INp , outperforms the standard cloud method in terms of coverage 

probability and average length, while insignificant differences are obtained in the mean squared error estimations (MSE). 

The improved performance of emulator over the cloud method is maintained in both “assumed realities” tested showing the 

capability of the former approach to better estimate the EDP|IM relationship for the cases that does necessarily follow a 

favorable pattern (e.g. power-law). 

Keywords: probabilistic seismic demand; statistical emulation; kriging; 

1.  Introduction 

Fragility functions constitute an essential component of the Performance-based earthquake engineering (PBEE) 

framework [1]. In the current state-of-the-art, there are three main methods for deriving fragility functions: 

empirical, analytical and based on experts’ judgement [2]. The former approach is considered to be the most 

credible one, while the latter is only used when none of the other two approaches can be implemented [3]. 

However, empirical approaches have several limitations, including the difficulty in properly characterizing the 

levels of seismic intensity and a non-subjective damage state allocation; but more importantly, the lack of 

sufficient seismic damage data in most areas of the world.  

Analytical methods are becoming increasingly popular as they offer the user the flexibility to choose from 

analysis methodologies, various structural parameters, characteristics of input ground motions etc. Several 

approaches exist for the analytical fragility assessment of various building classes. The present study aims to 

advance methods and tools for analytical fragility analysis of mid-rise RC buildings. This is achieved by 

investigating alternative statistical approaches for fitting the conditional distribution of Engineering Demand 

Parameter given Intensity Measure (EDP|IM) to be used for the derivation of fragility curves. In particular, 

emulation surrogate models are adopted to provide estimates, and the associated variances, for the conditional 

distribution of EDP|IM relationship that would be obtained if it was possible to run the analysis models at all 
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possible combinations of their inputs, i.e. any possible ground motion input. The emulation approach, which is a 

version of kriging, uses a mean function as a first approximation of the mean conditional distribution and then 

models the approximation errors as a Gaussian Process (GP). The main advantage is the flexibility associated 

with this approach, as it does not impose a fixed mathematical form on the EDP|IM relationship as in the 

standard cloud method (discussed below). 

A new statistical emulation approach which provides estimates and variances, for the conditional distribution of 

EDP|IM relationship is introduced here, as a part of a wider analytical fragility assessment framework. The 

capabilities of this new approach are investigated when trying to predict two artificially generated ‘true’ 

functions and tested against the outcomes of the standard cloud analysis. 

2.  Cloud analysis 

One of the most commonly used methods for characterizing the relationship between EDP and IM is the cloud 

method [4–6]. Within this method, a structure is subjected to a series of ground motion (GM) time-histories 

associated with respective IM values in order to estimate the associated seismic response. Nonlinear dynamic 

analysis (e.g. nonlinear time-history analysis - NLTHA), is usually used to estimate the response of the building, 

expressed in terms of EDP, when subjected to the aforementioned GMs. The resultant peak values of EDP for 

given IM levels when recorded form a scatter of points, the so-called “cloud”. A statistical regression model is 

used to fit the cloud of data points which is represented by a simple power-law model. According to this model, 

the EDP is considered to vary roughly as a power-law of the form 
baIM such that, after taking logarithms, the 

relationship can be expressed as in equation (1): 

      ln ln lnEDP a b IM e    (1) 

where EDP is the conditional median of the demand given the IM , a , b are the parameters of the regression, 

and e is a zero mean random variable representing the variability of  ln EDP  given the IM . However, some 

situations exhibit substantial heteroskedasticity (i.e. non-constant variance), which needs to be modelled 

explicitly within the fragility analysis framework [7]; for example by performing linear regressions locally in a 

region of IM values of interest.  The use of logarithmic transformation indicates that the EDPs are assumed to be 

lognormally distributed conditional upon the values of the IMs; this is a common assumption that has been 

confirmed as reasonable in many past studies [8,9].   

Apart from the advantages of simplicity and rapidity over alternative demand fragility assessment methods, 

discussed in following sections, cloud analysis has several restrictions. Firstly, the assumption that the relation of 

IM and EDP is represented appropriately by a linear model in the log space. This assumption may be valid for a 

short range of IM and EDP combinations but not for the entire cloud response space. Secondly, the dispersion of 

the probability distribution of EDP given IM is constant, while several studies have shown that the dispersion of 

EDP might increase for increasing IM values [10]. Lastly, the accuracy of the cloud method is highly dependent 

on the selection of earthquake records used as an input [11]. 

3.  Statistical emulation 

Complex mathematical models exist in all scientific and engineering areas aiming to capture the real-world 

processes and simulate sufficiently the real-systems. These mathematical models are usually translated into 

computer codes and may require significant computational resources. The mathematical functions and the related 

computer codes may be referred to as simulators [12]. A simulator, as a function (.)f , takes deterministic 

vectors of inputs x  and generates unique outputs, )(xy f for each given input. However, the results are 

subject to uncertainties – for example, due to uncertainties in the inputs and in the simulator construction itself 

[13]. To assess the effect of these uncertainties, one option is to use uncertainty and sensitivity analysis methods 

requiring many simulator runs, as discussed at [14]. However, this is impractical for complex simulators that are 

computationally demanding to run [12]. To overcome this, an approximation )(ˆ xf of the simulator )(xf , 
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known as a statistical emulator, may be introduced to act as a surrogate. If )(ˆ xf is a good proxy of the 

simulator, it can be used to carry out uncertainty and sensitivity analysis but with significantly less effort. 

An emulator is a simple statistical representation of the simulator and is used for the rapid estimation of the 

simulation outputs. The emulator provides an approximation, )(ˆ xf say, to the true simulator output )(xf ; and 

also provides a standard deviation to quantify the associated approximation error. A small number of data points, 

obtained by running the simulator at carefully chosen configurations of the inputs, is required to train the 

emulator. The emulator developed for the present study is a Gaussian process (GP) model. GP models are 

described in the next subsection; and contrasted with the standard approach of cloud analysis in Section 2.  

In the standard GP approach to the modelling of simulator outputs, the output function )(xf is regarded as a 

realized value of a random process such that the outputs at distinct values of x jointly follow a normal (or 

Gaussian) distribution. In most applications, )(xf is a ‘smooth’ function in the sense that a small variation in 

the input x will result in a small perturbation in the output )(xf . Smoothness of a Gaussian process is ensured 

by specifying an appropriate structure for the covariance between process values at distinct values of x. For 

example, the use of a Gaussian covariance model (not to be confused with the “Gaussian” in the GP, which 

relates to the distribution, rather than the covariance structure), results in smooth realizations that are infinitely 

differentiable. 

In the context of analytical fragility estimation, the input x represents a ground motion sequence and the output 

)(xf represents the simulated EDP for that sequence. However, fragility estimates are rarely presented as 

functions of an entire ground motion sequence: rather, they are presented as a function of an intensity measure 

( )t t x , say, that is used as a proxy for the complete sequence. In practice, the relationship between any such 

scalar proxy measure and the EDP is imperfect so that the simulator outputs, regarded as a function of t rather 

than x, are no longer smooth. As an example of this, two different ground motion records characterized by the 

same value of t (i.e. having the same IM) will not in general generate identical outputs. As a result, the standard 

emulation approach must be modified slightly to apply it in the context of fragility estimation. 

The required modification is still to regard )(xf  as the realized value of a random process, but now such that 

the conditional distributions of )(xf given ( )t x  themselves form a Gaussian process. Specifically, write 

)(xf as: 

 ( ) ( ) ( )f t  x x  (2) 

where ( )t  represents the systematic variation of the output with the IM and ( ) x  is a discrepancy term with 

[ ( )] 0E  x , representing uncertainty due to the fact that t  does not fully capture the relevant information in 

x . In the first instance it will be convenient to assume that ( ) x  is normally distributed with a constant 

variance, 
2 (this assumption can be checked when applying the methodology); also that ( ) x is independent of 

( )t , and that 1( ) x is independent of 2( ) x when 1 2x x . Note that in equation (2), the term ( ) x is 

deliberately used instead of ( )t . The reason for doing this is to allow two simulator outputs with different x  

but same value of t , to be considered as separate, allowing for scatter about the overall mean curve in a plot of 

)(xf  against ( )t x . Equation (2) then immediately yields the conditional distribution of EDP given IM as 

normal, with expected value ( )IM and variance 
2 . 

To exploit GP emulation methodology now, a final additional assumption is that ( )t varies smoothly with t and 

hence can itself be considered as a realization of a GP. Specifically, denote the expected value of ( )t  by ( )m t , 

denote its variance by 
2 and specify a correlation function (such as the Gaussian) that ensures smooth variation 

with t. Under the Gaussian correlation function, the covariance between 1( )t  and 2( )t  is: 
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where is a parameter controlling the rate of decay of the correlation between function values at increasingly 

separated values of t . As an illustrative example, the mean function ( )m t  could be specified as linear, i.e. 

0 1( )m t t   : this represents a first approximation to the function ( )t in Eq.(2), with the correlation 

structure allowing for smooth variation in the “approximation error” ( ) ( ) ( )t m t z t   , say.  

Combining all of the above, in the case where the mean function ( )m t  is linear we find that values of )(xf at 

distinct values of x  are jointly normally distributed such that: 

- The expected value of )(xf  is: 0 1t   

- The variance of )(xf  is equal to:     2 2Var ( ) +Vart       x  

- For 1 2x x , the covariance between 1( )f x  and 2( )f x  is: 
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 where 1 1( )t t x and 2 2( )t t x . 

Notice that these expressions depend on the full input vector x only through the IM ( )t x . As a result, the 

simulator outputs can be analyzed as though they are functions of t  alone and, specifically, subjected to a 

standard GP analysis to estimate the systematic variation ( )t . The only difference between this formulation 

and a standard GP emulation problem is that when 1 2t t , the covariance between the simulator outputs is 

2 2  rather than just 
2 . The additional 

2  term allows for additional variance associated with the 

discrepancy term ( ) x in equation (2).  

Having formulated the problem in terms of Gaussian processes, the simulator can be run a few times at different 

values of x , and the resulting outputs can be used to estimate the parameters in the GP model which, as set out 

above, are the regression coefficients 0  and 1 , the variances 
2  and 

2 , and the correlation decay parameter 

 . Having estimated the parameters, the results can be used to interpolate optimally between the existing 

simulator runs so as to construct an estimate of the demand curve ( )t  and associated standard deviation. The 

optimal interpolation relies on standard results for calculating conditional distributions in a Gaussian framework. 

The approach is used extensively in geostatistics to interpolate between observations made at different spatial 

locations, where it is often referred to as “kriging” [15]. In geostatistics, the term 
2 is referred to as a ‘nugget’ 

and accounts for local-scale variation or measurement error. Nonetheless, in the present context the above 

argument shows that it can be derived purely by considering the structure of the probabilistic seismic demand 

problem. 

It is noteworthy to mention that similarly to the cloud method, the emulator analysis is also carried in terms of  

 ln EDP , due to the normality and heteroscedasticity assumptions, which are better justified on the log scale. 
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4.  Methodology 

4.1 Defining ‘true’ functions 

In this study two different scenarios are considered, each corresponding to a different “reality” represented by an 

artificially generated IM:EDP relationship derived from a sample of real analysis data, as described in Section 

4.3. In each relationship, the expected value of some function of the EDP is given by a mean function ( )t  as in 

equation (2); and ( )t  is represented as a sum of a deterministic mean function ( )m t  and an approximation 

error ( )z t : 

 ( ) ( ) ( )t m t z t    (5) 

The deterministic mean function ( )m t  is represented by a simple regression model. Traditional cloud analysis 

corresponds to a situation in which ( )t is the expected value of ln( )EDP , the mean function ( )m t  is a linear 

function of ln( )t and the approximation error ( )z t  is zero. However, the framework considered here allows an 

exploration of a wider range of situations.  

Our two chosen “assumed realities” are as follows:  

1. Reality 1: the expected value of ln( )EDP is an exact linear function of ln( )IM with no approximation 

error (i.e. with ( ) 0z t   in equation (5)). This “assumed reality” is the situation for which the standard 

cloud method is designed. 

2. Reality 2: the function ( )t  represents the expected value of EDP rather than ln( )EDP , and a non-zero 

approximation error ( )z t  is included in equation (5) so that ( )t is no longer an exact linear function of 

ln( )t .  The approximation error is generated as a Gaussian random field (making sure that the resultant 

“true” function is monotonically increasing). This case can be used as an example where both models 

(standard and emulator) are wrong, and will shed light to the capability of these two models to estimate 
the EDP|IM relationship. 

The two generated true functions are illustrated in Figure 1. As it becomes evident from the description of each 

“assumed reality”, the objective is to explore the capability of the methods to predict EDP|IM relationship under 

favorable or less favorable situations. This is done by using a subset of the generated EDMs to calibrate both the 

traditional and emulator methods, and then using the results to predict the remainder of the generated EDMs. As 

well as predicting the values themselves, 95% prediction intervals are computed as a way of quantifying the 

uncertainty in the predictions. 

To this aim, the coverage probability of the 95% prediction intervals (hereafter called coverage), the average 

length of these intervals and the mean squared error (MSE) are the metrics used to assess the performance of the 

emulation and standard approach. Coverage shows how accurate the uncertainty assessment is, by calculating the 

proportion of intervals containing the actual EDP. If the uncertainty assessment is accurate, the coverages from a 

method should be equal to their nominal value of 0.95. 

The average interval length assesses the amount of uncertainty in the predictions intervals and is computed as:  

 

1

95 95
Average Length

n
i i

i

UL LL

n

 
  

 
  (6) 

where UL95i and LL95i are respectively the upper and lower ends of the ith prediction interval. Ideally, 

prediction intervals should be as short as possible subject to the correct coverage. 
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Figure 1 - Two artificially generated “true” functions for the high-fidelity analysis of the Special-Code case study.  

The MSE assesses empirically the quality of the vector of n  predictions, Ŷ , with respect to an simulated EDP, 

Y , and is defined as: 

 
 

2

1

1 ˆ
n

i i

i

MSE Y Y
n 

   (7) 

4.2 Tailoring emulator – Preparation and training 

A case study building design is analyzed at a high level of fidelity, as discussed in detail in Section 4.3. The 

resultant dataset, expressed in terms of IM and EDP is used as the input to train the emulator in order to provide 

estimates and variances, for the conditional distribution of EDP|IM relationship. To this aim, a computer code 

implementing the proposed framework is scripted in R [16]. 

The full sample is split to a training set and a test set. Four different cases are investigated, three utilizing 

training samples of 10, 25, 50 training inputs, representing a small, medium and large sample, and one using the 

full training input sample consisting of number of points associated with the ground motions that push the 

structures to nonlinear range [17]. Regarding the reduced samples, two sampling strategies are considered, 

including a random sampling, and a stratified sampling approach. For the stratified sampling, the full input 

sample is divided into 5 strata (bins) of equal intensity measure width, and then random sampling is applied to 

select the user-specified number of inputs (e.g. 2, 5, 10 inputs from each bin).  

Following the sampling procedure, the selected inputs are then used to train the emulator. As stated in previous 

sections, the setup of the emulation model allows one to implement a regression model to describe the mean 

function ( )t  and is suitable for the nature of the problem of interest. In this study, the authors decided to 

maintain a power-law regression model, as in the standard cloud method; however, alternative models, such as 

linear or higher order polynomials may also be used.   

The covariance parameters, as well as the nugget are estimated by using the variofit() function, which is included 

in the geoR package [18]. Ordinary least squares is used to fit the covariance model to an empirical variogram: 

the Gaussian model is used in the present work. The resultant covariance parameters are then used to predict the 

remaining EDPs and to calculate the 95% prediction intervals. 

4.3 Case study structure and ground motion selection 

A regular reinforced concrete (RC) moment resisting frame (MRF) is modelled and implemented as a case study 

for the current research work. This structure is designed according to the latest Italian seismic code (or NIBC08; 

[19]), fully consistent with Eurocode 8 (EC8; [20]), following the High Ductility Class (DCH) rules, and 
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represents the Special-Code vulnerability class, hereafter called the Special-Code building. Interstorey heights, 

span of each bay and cross-sections dimensions for the case-study building are reported in Figure 2. The 

considered frame is regular (in plan and elevation). Details regarding the design and the modelling of the 

building are available in [21] and [17]. 

Static pushover (PO) analysis is carried out by applying increments of lateral loads to the side nodes of the 

structure. These lateral loads are proportionally distributed with respect to the interstorey heights (triangular 

distribution). The PO analysis is carried out until a predefined target displacement is reached, corresponding to 

the expected collapse state.  

 

 
Figure 2 - Elevation dimensions and member cross-sections of the Special-Code RC frame. 

Table 1 summarizes the structural and dynamic properties associated with the case-study building model, namely 

mass of the system m, fundamental period T1 as well as the modal mass participation at the first mode of 

vibration. 

Table 1 - Structural and dynamic properties of the case-study building. 

Building Type 
Total mass, m  

(tn) 

T1  

(s) 

Modal Mass Participation  

(1st Mode) 

Special-Code 172.9 0.506 92.8 % 

 
Figure 3 shows the static PO curve associated with the studied building, and is reported in terms of top center-of-

mass displacement divided by the total height of the structure (i.e., the roof drift ratio, RDR) along the horizontal 

axis of the diagram, and base shear divided by the building’s seismic weight along the vertical axis (i.e., base 

shear coefficient).  

A set of 150 unscaled ground motion records from the SIMBAD database (Selected Input Motions for 

displacement-Based Assessment and Design; [22]), is used here. SIMBAD includes a total of 467 tri-axial 

accelerograms, consisting of two horizontal (X-Y) and one vertical (Z) components, generated by 130 worldwide 

seismic events (including main shocks and aftershocks). In particular, the database includes shallow crustal 

earthquakes with moment magnitudes (Mw) ranging from 5 to 7.3 and epicentral distances R ≤ 35 km. A subset 

of 150 records is considered here to provide a significant number of strong-motion records of engineering 

relevance for the applications presented in this paper. These records are selected by first ranking the 467 records 

in terms of their PGA values (by using the geometric mean of the two horizontal components) and then keeping 

the component with the largest PGA value (for the 150 stations with highest mean PGA).  

Nonlinear Dynamic Procedures (NDP), and particularly NLTHA is utilized to estimate the seismic response of 

the studied frame, representing a high level of fidelity analysis, namely high fidelity. 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

8 

 

 
Figure 3 - Static PO curve for the Special-Code RC frame building. 

In the current study, the focus is laid on the deformation-based EDP, defined as maximum (over all stories) peak 

interstorey drift ratio (denoted as MIDR). 

With regard to the IM input, previous studies agree that most informative IMs (i.e. vector-valued and advanced 

IMs respectively) are more suitable for predicting the seismic response of structure, and eventually the seismic 

fragility [17,23], as they also perform well under most IM selection criteria. Therefore the advanced scalar IM 

INp [24] is used herein. INp , which is based on the spectral ordinate Sa(T1) and the parameter Np, is defined as: 

   

paN NTSI
p 1  (8) 

where α parameter is assumed to be α = 0.4 based on the tests conducted by the authors and Np is defined 

as: 

 
 

 

  
 11

1,

1

,...,
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N

i ia
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Navga

p

N


  (9) 

TN corresponds to the maximum period of interest and lays within a range of 2 and 2.5T1, as suggested by 

the authors. 

5.  Evaluation of emulation for probabilistic seismic demand against cloud analysis 

All the steps discussed in the Methodology section are applied here in order to build the emulator, which 

provides estimates, and the associated variances, for the conditional distribution of EDP|IM relationship. The 

outcomes of the emulation approach are then compared to standard method outcomes, namely the cloud method. 

The results of the NDA analysis of the Special-Code building, expressed in terms of MIDR and the advanced 

IM, INp are presented here. The reason for selecting this EDP:IM combination is based on previous studies 

carried by the authors regarding the selection of optimal IMs for the fragility analysis of mid-rise RC buildings 

[17].  

Figure 4 illustrates the mean estimations and the associated 95% confidence intervals of the emulation and cloud 

approach, utilizing the full sample for the two “assumed realities” defined in Section 4.1. Table 2 shows the 

training inputs of the emulator, namely the sample size (stratified sampling used here) and the covariance model, 

in conjunction with the metrics used to assess the performance of the emulation and the cloud approach, for the 

two “assumed realities” investigated. A close examination of the results presented in Table 2 shows that the 

coverage probability for the case of the emulator is always closely matching the nominal coverage probability, 

with ±0.5% difference for both generated true functions, while the associated difference for the cloud case is 

reaching up to +3.3%. This means that the cloud approach is producing conservative confidence intervals, i.e. 

wider confidence intervals. As a result, the estimated average length of the emulation approach is always less 
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Figure 4 - Mean estimations and associated 95% confidence intervals of emulation (left panels) and the cloud approach 

(right panels) for Reality 1 (top row) and Reality 2 (bottom row). 

than the respective average length of the cloud, indicating that the predictions of the emulator are less uncertain. 

The reduction of the average length recorded in the case of emulator (comparing to cloud) is between 4.0-6.7% 

for larger sample sizes (i.e. full and 50-points sample), and 10.5-13.6% smaller sample sizes (25- and 10-points 

sample). Note that the biggest differences in average length are observed for the Reality 2, showing the 

capability of the emulator to better estimate the EDP|IM relationship for the cases that does necessarily follow a 

favorable pattern (e.g. power-law). Last, insignificant differences are obtained in terms of the MSE computed for 

both for models, with the difference never exceeding ±1.7% for Realities 2, and ±3.3% for Reality 1. 
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Table 2 - Emulator’s inputs and metrics to assess the performance of the emulation and the cloud approach. 

Sample 

size 

Covariance 

Model 
Reality 

MSE 

Emulator 

MSE 

Cloud 

Average 

Length 
Average 

Length 

Cloud 

Coverage 

(%) 

Coverage 

(%) 

Emulator Emulator Cloud 

Full Gaussian 1 0.397 0.410 1.657 1.722 95.00 98.33 

50 Gaussian 1 1.004 1.019 1.653 1.743 95.18 97.44 

25 Gaussian 1 4.245 4.159 1.689 1.866 94.60 96.72 

10 Gaussian 1 4.352 4.238 1.696 1.886 94.89 97.08 

Full Gaussian 2 4.717 4.692 1.989 2.087 95.00 98.33 

50 Gaussian 2 5.050 5.035 1.982 2.114 95.14 97.44 

25 Gaussian 2 8.931 9.086 1.996 2.268 94.54 97.01 

10 Gaussian 2 8.555 8.513 2.026 2.284 94.45 96.65 

6.  Conclusions and future work 

In this study, a new statistical emulation approach is introduced for estimating the mean and the associated 

variance of the conditional distribution of EDP|IM relationship, overcoming some limitations of the standard 

cloud method. The capabilities of this new approach are investigated when trying to predict different “assumed 

realities” and the results are compared against the standard cloud analysis results. 

To this aim, a RC mid-rise building representing the Special-Code vulnerability class of the Italian building 

stock is used as a case-study structure. An artificially generated IM:EDP relationships derived from a sample of 

real analysis data, obtained from the aforementioned case-study building, is considered. In addition, various 

sampling strategies and covariance structures are also explored in order to shed light to the capabilities of the 

emulator under different conditions. Random sampling strategy showed significant sensitivity to the selection of 

training inputs, especially for the cases of smaller sample sizes; as a result, stratified sampling is used here. 

In the presented case study, the coverage probability for the proposed emulation model is always closely 

matching the nominal coverage probability and also resulting a significant reduction of the average length, 

comparing to the respective average length of the cloud method. Particularly for the Reality 2 case, the average 

length reduction reaches 13.6%, highlighting the flexibility of the emulator over the standard approach. 

As a part of an ongoing research work, the proposed methodology has been also applied to case-studies 

associated with numerous input variations. These variations include the employment of buildings of different 

vulnerability class (i.e. Pre-Code buildings), the choice of additional scalar IMs (i.e. peak ground acceleration 

(PGA), spectral acceleration Sa(T1) amongst others), and the implementation of different levels of analysis 

fidelity (i.e. low-fidelity analysis, based on simplified analysis methods, such as the variant of capacity spectrum 

method, FRACAS[25]). The kriging exploits the relationship of neighboring points of the data sample, 

explaining why this approach is better suited with advanced IMs, as the scatter relation is reduced. However, 

applying the emulator to a wider scatter (e.g. low-fidelity results expressed in terms of peak ground parameters), 

may not always provide improvements that justify the additional work required. As a result, the future steps of 

this work will explore the full potential of this approach by employing a Bayesian framework to account for the 

uncertainty related to the emulator’s covariance parameters. Furthermore, further validation will be carried out, 

investigating more rigorous ground motion selection procedures, and additional building case studies (i.e. RC 

buildings with infills). 
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