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Abstract 
The U.S. Geological Survey (USGS) has made significant progress toward the rapid estimation of shaking and shaking-
related losses through their Did You Feel It? (DYFI), ShakeMap, ShakeCast, and PAGER products. However, quantitative 
estimates of the extent and severity of secondary hazards (e.g., landsliding, liquefaction) are not currently included in 
scenarios and real-time post-earthquake products despite their significant contributions to hazard and losses for many events 
worldwide. We are currently running parallel global statistical models for landslides and liquefaction developed with our 
collaborators in testing mode, but much work remains in order to operationalize these systems. We are expanding our 
efforts in this area by not only improving the existing statistical models, but also by (1) exploring more sophisticated, 
physics-based models where feasible; (2) incorporating uncertainties; and (3) identifying and undertaking research and 
product development to provide useful landslide and liquefaction estimates and their uncertainties. Although our existing 
models use standard predictor variables that are accessible globally or regionally, including peak ground motions, 
topographic slope, and distance to water bodies, we continue to explore readily available proxies for rock and soil strength 
as well as other susceptibility terms. This work is based on the foundation of an expanding, openly available, case-history 
database we are compiling along with historical ShakeMaps for each event. The expected outcome of our efforts is a robust 
set of real-time secondary hazards products that meet the needs of a wide variety of earthquake information users. We 
describe the available datasets and models, developments currently underway, and anticipated products. 
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1. Introduction 
When a significant earthquake occurs worldwide, U.S. Geological Survey (USGS) real-time products 
(ShakeMap [1], ShakeCast [2], PAGER [3], and Did You Feel It? [4]) rapidly estimate shaking and shaking-
related losses. Outputs are used internationally in both the public and private sector. Currently missing are 
quantitative estimates of hazard and losses from earthquake-triggered ground failures. Landslides and 
liquefaction are not always a major hazard (e.g., the 2014 Napa earthquake in California), but can cause a 
significant portion of losses in some events (e.g., the M7.9 2008 Wenchuan earthquake in China and the 2010-
2011 Christchurch earthquake sequence in New Zealand). Our goal is to be able to rapidly identify whether a 
given earthquake could be a significant ground failure event and, if so, to produce a spatial representation of the 
hazard and estimate losses. We recently outlined a detailed strategy for achieving these goals [5]. Here, we 
discuss recent progress on the outlined path. 

 So far, we have developed global statistical models for both liquefaction and landsliding [6–9]. In 
addition, we are also exploring more detailed, higher resolution models that can be used when the necessary 
inputs are available. This includes adapting existing models as well as developing our own. We are also 
exploring proxies for required inputs (e.g., slope strength, surficial geologic unit) globally and regionally where 
the required datasets are not already available. The goal is to end up with a suite of models that output analogous 
quantitative estimates of the likelihood and spatial extent of ground failure along with an algorithm to select one 
or more models based on an event location; the algorithm will also need to determine how model outputs and 
uncertainties are combined and/or weighted.  

We have built a standardized framework for running and plotting the outputs from ground failure models 
in Python 2.7 that we anticipate will eventually run in near real time. These codes are still undergoing active 
development as we add and modify models and add features but can be accessed openly in their current and 
changing state on the USGS GitHub page (www.github.com/usgs/groundfailure).  

 In the following sections, we describe the models, predictor datasets, and inventories that are currently 
available for use in developing this methodology. We describe ongoing developments toward this goal, compare 
some of the currently implemented models, demonstrate tools for quantitative model comparisons and 
techniques for ensuring compatibility between models, and explore the effects of resolution and uncertainty. 

2. Available Models 
2.1 Model types and outputs 
Before developing or choosing to apply a ground failure model, we first must decide and explicitly define the 
desired meaning of the output. There are several different types of model outputs, and variability exists even 
within categories. This can make it challenging to compare existing models to each other. Serious effort has been 
put into creating regional maps of ground failure susceptibility (e.g., [10]), but for earthquake response we need 
to combine susceptibility with estimates of event-specific shaking quantitatively.  

Ground failure hazard model outputs generally can be separated into five main categories: (1) a relative 
index (e.g., low to high), (2) a spatial coverage (proportion of area affected), (3) probability of at least one 
occurrence in a given area, (4) a binary prediction (fail or not fail), or (5) an estimate of actual ground 
displacement (lateral and/or vertical). Because the goal is to obtain consistent outputs from all models, we prefer 
models that provide quantitative outputs. The boundary between the meaning of coverage and probability is 
unclear when the cell resolution is comparable to the size of typical ground failures. Here, we focus primarily on 
models that estimate spatial coverage.  Since existing models provide a variety of outputs, we will need to 
calibrate the outputs from models we want to use against complete inventories to develop functions that map the 
native output of a given model to our desired output. 

The type of output from a given model depends on how it was developed. For example, earthquake-
triggered ground failure models generally fall into four categories: heuristic, statistical, mechanistic, or hybrid 
methods. Heuristic methods are based on rules defined by experts based on knowledge of the underlying 
physical process (e.g., [10–12]) These types of models can be effective at identifying susceptibility or hazard, 

http://www.github.com/usgs/groundfailure
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typically outputting a relative index (e.g., low, medium, high or an index number), but it is not always clear how 
to relate relative indices from different models and regions to each other. Statistical methods require inventories 
of past ground failures to develop relationships to explanatory variables that are selected as proxies for the 
factors that affect the underlying physics. Model performance is a function of the quality of the proxies and the 
inventories used in the analysis. Depending on how these models are developed, outputs can be either 
susceptibility or hazard, and the hazard outputs can be any of the five types described above. Mechanistic 
models, also referred to as physical models, are based on simplifications of our understanding of the physical 
process. While these models have the advantage of more accurately reflecting the underlying process, the main 
challenge is achieving accurate estimates of the required inputs and assessing the uncertainties caused by 
simplifications. Many models combine elements from more than one category; we refer to these as hybrid 
models. For models based on a deterministic approach, additional steps are generally required to relate the model 
outputs to the likelihood of ground failure or spatial coverage.  

Several feasible landslide models are available for regional and/or global application. Most use peak-
ground-motion parameters to represent shaking, generally from ground motion prediction equations (GMPEs) or 
ShakeMap; other models use epicentral or fault distance as a proxy for ground motion. In many cases, the 
plausibility of a model for regional or global application depends strongly on the availability and quality of the 
required inputs. The quality of many globally available model inputs is poor, and this affects the accuracy of the 
model when applied regionally. Tables 1 and 2 summarize some of the currently available landslide and 
liquefaction models for regional and global application. The number of liquefaction models is much more 
limited both in number and in global applicability.  

Table 1 – Summary table of selected regional and global landslide models 
Model 

 

Type Method Resolution Inputs Output 
type(s) 

Nowicki et al. 
[6]* 

Statistical Logistic 
regression 

~1 km PGA, maximum slope, friction angle+, 
CTI 

Probability 

Jessee et al. [7]* Statistical Logistic 
regression 

~250 m PGV, slope, lithologic unit, mean 
monthly precipitation, land cover 

Index 

Godt et al. [13]* Hybrid (mechanistic, 
heuristic) 

Simplified 
Newmark# 

~1 km PGA, cohesion+, friction angle+ Coverage 

Hazus [14] * Hybrid (mechanistic, 
heuristic) 

Judgment and 
literature review 

Same as 
susceptibility 

layer ** 

PGA, Susceptibility category 
(geology, wetness, slope)+ 

Coverage, 
Binary, 

Displacement 
Jibson et al. [15] Hybrid (mechanistic, 

statistical) 
Simplified 
Newmark# 

Same as slope 
resolution 

Arias intensity+, cohesion+, friction 
angle+, failure thickness+, saturated 

thickness+, slope 

Coverage 

Kaynia et al. 
[16]* 

Mechanistic Simplified 
Newmark# 

Same as slope 
resolution 

PGA and/or PGV, M, cohesion+, 
friction angle+, failure thickness+, 

saturated thickness+, slope 

Index 

Kritikos et al. 
[17] 

Statistical Fuzzy logic ~60 m MMI, slope, distance from faults+, 
distance from streams+, slope position 

Index 

Saade et al. [18] Hybrid (mechanistic, 
statistical) 

Limit 
Equilibrium 
with circular 

failure surface 

Same as slope 
resolution 

PGA, slope, cohesion+ and friction 
angle+ or GSI+, material constant+, and 

unconfined compressive strength+ 

Probability 

Marc et al. [19] Mechanistic Simplified 
expression 

N/A M, epicentral location, rupture plane 
geometry, faulting type, slope 

Total area 
and volume 

* Models implemented as of May 2016, # refers to applications of the Newmark method that use single ground motion parameters 
** 10 m in California susceptibility map [10], resolution depends on resolution of susceptibility map 
+ Currently of low quality globally and/or hard to obtain 
PGA = peak ground acceleration, PGV = peak ground velocity, GSI = geological strength index, MMI = Modified Mercalli Intensity, M = 
earthquake magnitude, Mo = earthquake moment, CTI = compound topographic index 
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Table 2 – Summary table of available regional and global liquefaction models 
Model Type Method Resolution Inputs Output type(s) 

Zhu et al. [8]* Statistical Logistic regression ~1 km PGA, CTI, VS30
+, magnitude Coverage 

Zhu et al. [9]* Statistical Logistic regression ~1 km PGV, Vs30
+, distance to rivers, 

distance to coast, mean annual 
precipitation 

Index, coverage 

Holzer et al. 
[20] 

Hybrid 
(mechanistic, 

statistical) 

Liquefaction Potential 
Index 

Limited by 
available geology 

Geology, PGA, magnitude, 
water table depth 

Coverage 

Matsuoka et 
al. [21] 

Statistical Cumulative normal 
distribution 

250 m Geomorphology, JMA Probability 

Hazus [14] Hybrid 
(mechanistic, 

heuristic) 

Judgment and 
literature review 

Limited by 
available geology 

Geology, PGA, magnitude, 
water table depth 

Probability, 
Coverage, 

Displacement 
Knudsen et al. 

[12] 
Heuristic Site Liquefaction 

Hazard Rating Factor 
(SLHRF) 

Limited by 
available geology 

Geology, PGA, magnitude, 
slope, elevation, distance to 

water bodies 

Index 

* Models implemented as of May 2016, + Derived from topography [22].  
PGA = peak ground acceleration, CTI = compound topographic index, Vs30 = shear wave velocity in the top 30 m, JMA = Japanese 
Meteorological Agency seismic intensity scale. 

3. Datasets 
Many of the model types described above require training datasets: inventories of occurrences from previous 
earthquakes. All require such datasets for testing. Certain predictor variables (Tables 1, 2) also need to be 
available for the region of interest; required variables differ from model to model, and these variables control 
model performance. 

3.1 Inventories 
Ground failure inventories vary widely in terms of the spatial resolution, extent, completeness, and mapped 
attributes. For example, the vast majority of liquefaction case histories are not documented as continuous maps 
but rather as individual points where liquefaction was observed. Few liquefaction case histories document 
horizontal and vertical displacements in a systematic manner or have characterized the spatial coverage of 
liquefaction. Ideal inventories consist of polygons outlining ground-failure areas throughout the entire affected 
area; at minimum, ground failures should be completely mapped for a well-defined area down to a clearly 
defined minimum size (e.g., 1-5 m is recommended for landslides) [23]. It is more useful to have a complete 
inventory for a well-defined extent than to have an incomplete inventory that extends across a larger area. 
Inventories, particularly liquefaction inventories, can be biased toward areas where people and buildings are 
more affected as opposed to remote areas.  

 We currently have access to 49 landslide and 27 liquefaction inventories (Table 3). Many are available 
only upon request from the authors, and so accessing digital files for many inventories requires considerable 
effort. Once inventories are obtained, the heterogeneity in inventory methods, completeness, and quality make it 
challenging to use the inventories in aggregate.  

 Table 3 – Summary table of available inventories 
Inventory type Total # of 

Inventories 
Total # of 

Earthquakes 
represented 

Total Point 
Inventories 

Total 
Polygon 

Inventories 

Earthquake 
Magnitude 

Range 

Range of 
number of 

occurrences 

Landslide  49 38 20 29 5.1 - 9.0 35 - 197,481 

Liquefaction  27 27 15 12 4.0 - 9.1 0 – 1,883 
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3.2 Predictor Variables 
All models require a digital elevation model (DEM).  A DEM is used primarily for computing slope angle, but it 
also can be used for computing total slope height as well as proxies such as water-table depth. One of the most 
important recent improvements in predictor variables is that the Shuttle Radar Topography Mission (SRTM, 
[23]) now provides DEMs with 1 arc-second (~30-m) resolution for most of the globe. However, this is still 
coarser than is ideal for estimating slopes in steep areas (see section 4.2) and is not available at high latitudes. 
Higher resolution DEMs are available for parts of the globe, including a 10-m DEM of the conterminous U.S. 
and higher resolution Lidar DEMs for some areas. However, higher resolutions lower the computational 
efficiency and present challenges in visualizing results regionally. Other important predictor variables include 
ground motions (discussed in section 4.3.2), proxies for slope strength (section 4.3.1), geologic and geomorphic 
mapping, and subsurface hydrology proxies such as the compound topographic index (CTI) and soil moisture 
(not discussed in detail in this paper). 

3.3 Determining level of completeness of inventories 

	

Figure 1 – Frequency-area distribution for two inventories of the landslides triggered by the 2010 Haiti 
earthquake. Green dots show the percentage of landslides captured by both in each bin [25, 26]. 

Many of the inventories included in Table 3 are not comprehensive. Some are not mapped for the whole area, 
some do not map all ground failure occurrences down to a specified size, and some do not report the mapped 
area and the minimum complete landslide size. One method for determining the level of completeness of a 
polygon inventory is to analyze the frequency-area distribution against theoretical curves. For landslides, a well-
documented relation exists between the area and frequency of landslides triggered by earthquakes and 
precipitation events; this relation follows an inverse power law that rolls over at small areas [27]. Figure 1 shows 
the frequency-area density (number of landslides in bin normalized by the bin width) of two inventories of the 
2010 Haiti earthquake mapped by two different groups. Note that though the slope of the curve is about the same 
at large areas, the Gorum et al. [25] inventory is shifted to the left because they only mapped about 70% of the 
area mapped by Harp et al. [26] Both curves roll over at small areas, but the Harp et al. curve extends to much 
higher densities, and peaks at smaller areas. Whether this rollover is an artifact of resolution and would 
disappear in a perfect inventory or whether it represents a physical change in the scaling-law is a point of active 
investigation. Regardless, the Harp et al. inventory is clearly more complete both in terms of area covered and 
minimum completely mapped landslide size, and this is reflected in these curves. Improving our understanding 
of frequency-area density curves and the physical reasons behind them can help determine the completeness 
levels of the inventories used in model development and testing; with this increased understanding, we can 
analyze deviations from the expected theoretical curves.  

3.4 Class balance and combining incompatible and incomplete inventories 
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For model development, testing, and calibration, we commonly need to sample from existing inventories. 
Having a wide a range of seismic (loading) and geologic/hydrologic (susceptibility) conditions is desirable, and 
so we want to maximize the available data. Predicting the spatial coverage of ground failure requires that the 
inventories be spatially complete and mapped as polygons so that the proportion of the total area where ground 
failure occurred for a given area is known; this is defined as the class balance. However, few inventories have 
been characterized in this manner, which is a major hurdle to using inventories in aggregate to develop and 
assess ground failure models. We have developed an algorithm that addresses this problem and allows us to 
increase the total amount of data available by using incomplete datasets. This is done by (1) iteratively 
estimating the class balance of incomplete inventories from complete inventories, and (2) imposing this class 
balance by statistically resampling the incomplete inventories.  

To illustrate this procedure, we create a synthetic landslide model (Figure 2) using ground motions 
computed from the Western U.S. GMPEs in the USGS National Seismic Hazard maps with an additional 
component of random variability of a subarea of a M7.4 ShakeMap scenario in the White Mountains of 
California (Fig 2A). We use ~90-m resolution slopes ([24], Figure 2B), cohesion uniformly distributed with a 
mean from a global layer [13] and cutoffs at ±100% of the mean (Fig 2C), and the unmodified friction angle 
layer from the same source. We used these values to calculate the critical acceleration using methods from 
Jibson et al. [15] and then estimated the Newmark displacement using regression equations [28] based on both 
PGA and PGV (Fig 2D). We then convert this to landslide probability (Fig 2E) by: 

                           P(f) = 0.335[1−exp(−0.048 Dn
1.565)],                                                      (1) 

from Jibson et al. [15] where P(f) is the probability of landsliding and Dn is the Newmark displacement in 
centimeters. Note that in this function, probabilities level off at 0.335. The probability is considered a “coverage” 
because the equation was developed by comparing predicted Newmark displacement values against the 
proportion of actual landslides triggered by the 1994 Northridge, California earthquake for each displacement 
bin. We treat this as the “true” landslide probability and create 1000 realizations of landsliding from it by 
randomly drawing from a binomial distribution (Fig 2F). To illustrate the effect of inventory class balance, we 
assume three different class balances in the sampling schemes: 0.5, 0.05 and 0.01. We then use the same method 
originally used to develop equation 1 with these synthetic realizations and try to reproduce the curve (Figure 
3A). Note that the commonly used class balance of 0.5 (50% failures, 50% non-failures) significantly 
overpredicts landslide probabilities, 0.01 seriously underpredicts, and 0.05, which is close to the actual class 
balance of 0.04, is very close to the true model (blue line). This demonstrates the importance of assuming the 
correct class balance whenever performing statistical sampling of ground failure inventories. Knowing the 
correct class balance, however, is impossible if inventories are incomplete or are point datasets. 

We propose the following algorithm to use complete inventories to compute the class balance of 
incomplete inventories, which thereby enables the use of incomplete data without biasing the analysis:  

1) Compute the sample class balance from the complete inventory (orange line on Fig 3B) 
2) For a range of potential class balances ([0,1]) for the incomplete inventory, compute a candidate model of 

the probability curve from the incomplete data (as in Fig 3A) and fit a curve. In this case, we use a curve 
having the same functional form as equation 1. 

3) Apply the model from step 2 to the area of the complete inventory and compute the class balance for this 
area. Repeat for the range of potential class balances to form the blue line (Fig 3B). 

4) The assumed incomplete inventory class balance (horizontal axis) that correctly estimates the class balance 
of the complete inventory (vertical axis) is the correct class balance for the incomplete inventory (the 
abscissa of the point defined by intersection of orange and blue line, Fig 3B) and should be used to resample 
the incomplete inventory for model development or assessment. Figure 3C illustrates the successful 
application of this method to find the class balance of the incomplete inventory from Figure 1 using a 
synthetic dataset from a different location that is complete (not shown). 
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Fig. 2 – Setup of sampling simulation described in text. Panel F shows one sampling realization. Friction angle 

(not shown) ranged between 21 and 28°.  

 
Fig. 3 – Demonstration of process for estimating the class balance of an incomplete dataset. See text for 

description. 

4. Model Evaluation, Comparison, and Compatibility 
We have so far implemented four landslide models and one liquefaction model. None are finalized and most still 
require extensive testing and refinement. As the landslide models are further advanced, we focus on those in this 
section. The first is an updated version of the global statistical model developed using logistic regression (Jessee 
et al. [7]), which is the closest to being finalized of all the landslide models. The updated model includes the 
addition of mean monthly precipitation, improved lithology, and land-cover terms. The second model is the 
regional Newmark method based roughly on Jibson et al. [15] but using regression equations relating ground-
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motion parameters (PGA, PGV) and critical acceleration (ac, acceleration above which movement will occur) to 
Newmark displacement [28, 29] instead of Arias intensity as in the original model. The fourth is the Godt et al. 
[13] model, which is also Newmark-based, but uses a threshold of Newmark displacement and estimates 
coverage by iterating over slope quantiles within 1 km grid cells. Finally, the fourth applies the Hazus 
methodology for estimating landslide hazard based on susceptibility categories and ground wetness [14]; the 
model combines elements of mechanistic models but is essentially a heuristic method. The Hazus method 
outputs coverage and/or ground displacement and can be adapted to estimate probabilities with additional user 
input. Currently this method can only be applied regionally for California because the necessary susceptibility 
input map (I-X, low to high) has been developed statewide [10], though currently is only available for wet 
conditions. 

Not as many liquefaction models are available that can be easily adapted to global or regional application. 
We are currently adapting the Holzer et al. [20] and Knudsen et al. [12] approaches for California by pairing 
these methods with the detailed geologic map of Wills et al. [30]. Implementation of these models is not 
straightforward due to subjective choices in some of the model inputs and the difficulty in obtaining reliable 
maps of the groundwater table. Currently, the only operational liquefaction model is Zhu et al. [8, 9]. 

4.1 Model comparisons 
To make objective decisions about which models to use, we need to be able to compare models to each other and 
test the models against inventories from real events. We are still in the early stages of developing these 
capabilities, so in this section we demonstrate some of the current models that are available and discuss some of 
the ways of comparing and evaluating models and potential pitfalls in doing so. We focus exclusively on the 
landslide models because several models are implemented to date. 

 Figure 4 shows the results of different models for a small section of the area affected by the M6.7 1994 
Northridge earthquake. This event triggered more than 11,000 primarily shallow, disrupted landslides that are 
inventoried and can be used for model evaluation [31]. All models output spatial coverage and can be directly 
compared to each other except for the Jessee et al. [7] model (Fig 4A), which is a relative index of hazard. We 
ran three iterations of the simplified Newmark method, where by simplified we mean Newmark methods using 
single ground motion parameters instead of time-series recordings, in this case using methods from Saygili and 
Rathje [28]. The first iteration was of ~90 m resolution using a global cohesion layer that was calibrated for 90-
m resolution slopes [13]. In the other two cases, we used regional cohesion values [15], which are more ideally 
suited to slopes of ~10-m resolution. We ran the ~10-m model for both dry and wet conditions, where wet means 
the failure thickness is 75% saturated. A unit weight of 15.7 kN/m3 was assigned to the Godt et al. [13] and 
simplified Newmark models. The failure thickness was uniformly set to 2.4 m, meaning these models only apply 
to shallow landsliding. The Hazus and Jessee et al. [7] models do not require a pre-defined failure thickness or 
unit weight. The susceptibility layer currently available for California that was used for Hazus, however, 
assumes wet conditions without a clear definition of what exactly that means. Note that conditions were dry 
during the actual event. 

In Fig 4H, we compare the models by constructing curves that plot the cumulative proportion of cells of 
each level of spatial coverage, the closer the curve is to the x-axis, the higher the predicted hazard. We also 
compute the coverage of the actual inventory over 90-m grid cells for comparison (blue line). This provides a 
simplified summary of the overall distribution of coverages predicted by each model in the study area. For 
example, ~95% of the cells in the actual inventory have coverages less than 0.2 (20% of the cell area), while 
only ~65% of the cells in the study area have coverages less than 0.2 for the Godt et al. [13] model. The hazard 
predicted by the 10-m regional simplified Newmark model is so low its line on Fig 4H hugs the top of the chart 
and is barely visible. The Jessee et al. [7] model appears to overpredict most severely, but because it outputs a 
relative index and is not directly comparable, it is difficult to evaluate overprediction. The cumulative 
distribution of the 90-m global Newmark model is closest to that of the true inventory, meaning it performs well 
at estimating overall hazard for this area. However, this metric does not have a spatial component so it does not 
tell us if the models correctly predict the locations of elevated hazard. 
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Fig. 4 – Comparison of different landslide models for the 1994 Northridge earthquake. H summarizes the 

cumulative distribution of values in each model compared to the spatial coverage of the actual inventory [7, 13–
15]. The Jessee et al. [7] model (A) is plotted on a different scale and dashed on H because it is a relative index 

and is not directly comparable to the others. Black box in the top left plot indicates subarea shown for B-G. 

There are many ways to assess model performance spatially. One intuitive approach is the Brier score 
[32], a scoring rule defined as the mean squared difference between the predicted and observed probability of 
occurrences; thus lower values indicate better performance and a noninformative model (a constant prediction of 
0.5) gives a Brier score of 0.25. If we inspect the most favorable model based on Fig 4, the 90-m (dry) Newmark 
model, its yields a Brier score of 0.023, which suggests good model performance overall. However, performance 
metrics are affected by the class balance; in this case the inventory contains very few landslide cells compared to 
nonlandslide cells, and so reporting the metric separately for the inventory cells where landsliding occurred and 
did not occur is informative. For the 90-m model, the Brier scores are 0.868 and 0.005 for landsliding and 
nonlandsliding, respectively. Thus, the model accurately predicts nonlandsliding but is noninformative at 
predicting landsliding. In fact, none of the models has a Brier score for predicting landsliding of less than 0.25; 
the closest is the Jessee et al. model [7] at 0.252, but the tradeoff is that this model overpredicts relative to the 
others and in fact is the only model that has a nonlandsliding Brier score greater than 0.25; this indicates that it 
performs well at identifying landsliding but not at identifying nonlandsliding. This illustrates some of the pitfalls 
of relying on a single metric to judge model performance. Ideally, metrics should be chosen carefully based on 
what is most important to the user. If more fully capturing the areas potentially affected by landsliding is more 
important to the user than identifying areas of lower hazard, then overprediction typically is accepted as a 
tradeoff.  

At the other end of the spectrum, the 2014 Napa, California earthquake (M 6.0), which also occurred 
under dry conditions, triggered only a handful of roadcut failures [33] and no complete inventory was compiled. 
Figure 5 shows the results of some of the same landslide models described above for the Northridge earthquake. 
Regional cohesion and friction angle are not available so the global cohesion and friction layer [13] was used for 
the Newmark-based methods. The area where rockfalls occurred is circled in Fig 5. Note that all of the models 
overpredict hazard, while none of them singled out the area where rockfalls were documented as an area of 
particular hazard. The reason for the overprediction is most likely due to the large uncertainties of input ground-
motion estimates and/or strength information, which will be discussed in section 4.3. In particular, the global 
strength layers likely underestimate strength, particularly when used with higher resolution slope estimates (see 
section 4.3.1). 
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Fig. 5 – Comparison of landslide models for the 2014 Napa Earthquake (M 6.0) for which only a few roadcut 

failures were triggered, primarily in the circled area [7, 13, 15, 33]. 

4.2 Resolution 

 
Fig. 6 – Comparison of cumulative distribution of simplified Newmark method results for Northridge subarea 

shown in Fig 4 using slopes derived from DEMs with three different resolutions. All else is constant. 

The resolution of the DEM used to compute slope angles exerts considerable control on the model outputs. To 
illustrate this, we ran the simplified Newmark method for the same subarea affected by the Northridge 
earthquake as section 4.1. We used regional cohesion and friction [15] for saturated conditions (75% saturation) 
changing only the resolution of the DEM. Figure 6 shows a comparison of the cumulative distribution of cells of 
each level of spatial coverage, showing that all else the same, the model with the highest resolution slopes (10 
m) resulted in the highest level of hazard, the hazard progressively lessening as the resolution decreases to 90 m. 
In fact, if we used more realistic dry conditions (not shown), the 30-m and 90-m resolution predict effectively no 
hazard when coupled with more accurate cohesion estimates even though we know in reality that extensive 
landsliding was triggered (Fig 4E). Slopes calculated from lower resolution DEMs smooth over the steepest 
areas, underestimating slopes where it most matters. For liquefaction models, which primarily affect areas of 
lower slopes, higher resolution does not bring as much of a benefit because coarser resolution can be effective at 
finding broad areas of low slopes, but higher resolution allows for the inclusion of smaller isolated flatter areas 
where liquefaction hazard can also be high. 

4.3 Uncertainties 
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4.3.1 Strength uncertainties 

 
Fig. 7 – Simplified Newmark model for the Northridge earthquake for dry conditions, failure thickness of 2.4 m 

with (A) regional [15] and (B) global [13] cohesion and friction angle layers, all else is the same. 

One of the largest uncertainties for landslide models is poor-quality strength information [34]. Even in the 
rare cases where we have sufficient laboratory tests, these results are not typically representative of rock strength 
at outcrop scale [18]. To demonstrate the importance of this factor, we ran the same simplified Newmark method 
as in previous sections with 10-m resolution slopes changing only the strength layers used (friction angle and 
cohesion) between regionally derived [15] and globally derived [13] layers. A 10-m DEM was used to estimate 
slopes. Cohesion is the main differing factor; the global layer varies from 5 to 10 kPa in this area while the 
regional model is much higher ranging from 16.8 to 47.9 kPa. Friction angles are similar between the two 
models. The results (Figure 7) are extremely different. This illustrates the degree to which the strength data 
control the output, as other studies have also found [34]. A visual comparison of Fig 7B to the actual inventory 
(Fig 4D) indicates that the cohesion values in the global model are far too low for this area when slopes are 
accurately predicted (10-m resolution), even though the global model works relatively well when slopes are 
derived from a lower resolution DEM (90-m, Fig 4). This is because the underestimated cohesion values roughly 
compensate for the underestimated slope angles. Regrettably, detailed strength estimates that are valid at the 
outcrop scale are rare, uncertain, and lacking realistic variability within geologic units when they do exist. If we 
want to be able to apply any models that depend on strength data over large regions or globally, we need to (1) 
develop methodologies for using existing, easily accessible information (e.g., geologic maps, topographic 
distributions, uplift rates, climatological factors, soil thickness) to estimate slope strength distributions (rather 
than single values) over large regions; and (2) develop calibration factors for adjusting model outputs to account 
for underestimated slopes because 30-m resolution is the best available currently for most parts of the world and 
as we saw in Fig 6, 30-m resolution is not sufficient. 

4.3.2 Ground-motion uncertainties 
One of the most important model inputs, the shaking, commonly has significant uncertainties. Some are taken 
into account in the grid-based ShakeMap uncertainty calculations. These uncertainties are low for events having 
numerous instrumental constraints, but when instrumental and macroseismic intensity reports are scarce 
uncertainties can be substantial. This can result in widely variable results of the ground failure models, as 
illustrated in Figure 8 showing the Zhu et al. [9] model for the April 2016 M7.8 earthquake in Ecuador. The 
model was run for median ground motions and +/- one standard deviation (in natural-log space), labeled low and 
high in Fig. 8. The median liquefaction hazard for the area shown is 29% lower and 37% higher for low and high 
ground motions, respectively, as compared to the model using median ground motions. The ShakeMap, as of 
early May 2016, has very few instrumental data, and so the uncertainties are essentially those of the GMPE, 
which in this case equates to about a factor of 2 in amplitude. Additional ground-motion uncertainties come from 
a number of factors, including the absence of topographic amplification and spatial variability in the current 
ShakeMap implementation. 
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Fig. 8 – The Zhu et al. [9] liquefaction model for the M7.8 Ecuador earthquake in 2016 showing (A) median 
peak ground velocity, (B) the Zhu et al. model for median peak ground velocity, (C) the same but for median 

PGV minus one standard deviation and (D) the same for median PGV plus one standard deviation. 

5. Summary 
Our open-source research and development efforts, outlined in this paper, include (1) collecting inventory 
datasets, (2) developing methods for integrating inconsistent datasets, (3) exploring global proxies for 
susceptibility, (4) implementing and testing different models available from the scientific community, and (5) 
exploring new methods for communicating results and accounting for uncertainty. To accomplish these goals, 
we expect to be pragmatic about both the challenges and inherent limitations of such modeling efforts. Much 
work remains towards achieving a robust suite of hazard models that can be integrated with existing products, 
yet at that point we will be one step further along the path to estimating near-real time losses from ground 
failure. 
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