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Abstract 
The effect of uplift on earthquake response of buildings had been investigated by nonlinear earthquake response analyses 
and shaking table tests of small-scale building models. As a result of these studies, it is found that uplift reduces story shear 
force that causes structural damage. If it is possible to level off earthquake loading acting on a building by allowing uplift, 
an epoch-making design system that is independent of input earthquake size or its periodic characteristics may be able to be 
established. However, it has been found that an uplifting building is vibrating randomly due to higher mode vibration. 
Therefore it is difficult to predict external load distribution and its size acting on the building. This study presents a modal 
analysis approach applied to vibrating structures in grounding and uplifting phases. By assuming the non-linear term can be 
treated as an external force, the modal analysis problem can be simplified and it becomes possible to carry out modal 
decomposition. Based on this assumption, modal decomposition on response of the uplift building could be carried out as 
"spring pendulum under gravity". The behavior of SDOF spring pendulum which represents a higher mode is very simple 
and clarified that vibration was simply caused by movement of an equilibrium position accompanying change of gravity 
value and direction. 

Keywords: Uplift, Modal decomposition, Higher-mode vibration, Spring-pendulum, Impact 

1. Introduction 
Recent investigations showed that one of the significant problems to establish the aseismic design method with 
allowing uplift was influence of higher-mode vibration. In terms of physical static equilibrium of external load 
and structural internal stress, external load may be limited when a base overturning moment due to external load 
exceeds the resistance of self-weight overturning moment. However, according to dynamic analyses and shaking 
table tests of small-scale building models, it has been found that an uplifting building was vibrating randomly 
due to higher mode vibration. Moreover, some internal stresses were larger than ones derived from static 
analyses. Therefore, it is difficult to predict external static design load distribution and its size. One of the aims 
in this research is to find physical principle about mechanism of amplifying of higher-mode vibration. 
Past related researches showed that uplift of foundation may have an advantageous effect on seismic 
performance of structures. This advantage was initially recognized by Housner(1963) [1]. He had investigated 
the damaged structures on 1960 Chile Earthquake and reported structures showed good performance against 
earthquake and also used a rectangular, rigid and free standing block to investigate the rocking behavior of 
structures. Then he expressed the uplift behavior as “Inverted Pendulum”. Later, shaking table tests and 
numerical analysis approaches on uplift behavior were studied in all over the world. 
Authors think that the original theoretical approach about mechanism of higher-mode vibration was researched 
by Meek(1975) [2] using a simple single-mass model that has two degree of freedom. As other research, a 
shaking table test of small-scale 9-story steel frame took place in University of California(1978) [3]. Then 
Huckelbrige reported an interesting feature of response time histories include “spikes” caused by collision 
between the footing and the rigid base. 
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Based on the above knowledge, higher-mode vibration caused by uplifting and landing has been recognized. 
However, the general characteristics have not been explained yet. So it was one of the problems to be solved. 
An early theoretical approach for uplifting structure was proposed by Ishihara et al (2008) [4].They researched 
higher-mode vibration from a different viewpoint. Within a limit of piecewise-linear response(from grounding 
condition to uplift and just before regrounding), Meek’s method was applied to multi-story model based on 
modal decomposition and examined the dynamic characteristics. Then it was concluded that mode vectors 
changed by shifting to dynamic uplifting state from dynamic fix-supported state and then higher-modes are 
excited due to gravity.  
Considering the above background, what is reported in this paper presents a new modal decomposition approach  
to apply a free vibration system of elastic structure with nonlinear rocking spring. Moreover, new physical 
interpretation about the mechanism of amplifying of higher-mode vibration was found. 
As a fundamental problem, modal decomposition approach can be applyed to linear system only. However, an 
equation of motion system to continuously simulate grounding state and uplifting state inherently has nonlinear 
component. In order to deal with the above problem, by assuming that the non-linear component can be treated as 
an external force, internal force becomes linear system. Using this approximate vibration model, the modal 
analysis problem can be simplified and it becomes possible to carry out modal decomposition.  

2. Simple model of uplifting structure and equation of motion 
2.1 Rocking model 
It is assumed that a building has a rigid foundation with a stiff girder and has tension-free supports at both edges 
of the foundation like a building on a hard ground or on a pile foundation which intentionally detaches from the 
foundation under tension condition (Fig.1). In order to simulate uplift behavior of this simple building, lumped-
mass rocking model that has an elastic linear superstructure and an elastic bilinear rocking spring is considered. 
As shown in Fig.2, horizontal displacement ui is defined not to include contribution of rocking displacement, θHi. 
MUL is the limit of uplift resistance force and θUL is the rocking angle when the structure starts uplifting. 

MUL due to gravity is defined by the following equation: 

2/tUL BgmM ××=  (2.1) 

where mt is the total mass of the system. g is gravitational acceleration and B is the width of foundation parallel 
to the excited direction. (Fig.1) 

KR is initial stiffness of rocking spring that represents soil stiffness. 

A special feature of this simple model is that the rocking spring which has bilinear-elastic restoring hysteresis 
represents the resistance of continuous gravity effect during grounding and uplifting state. 

 

 

 

 

 

 

 

 

Fig. 1 – Uplift building                 Fig. 2 – Rocking model(Lumped Mass Type) 
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2.2 Transposition of the nonlinear component and linearization of internal force 
An equation of motion represeting the rocking model  is: 

0fKxxCxM ex =+++   (2.2) 
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For the sake of simplicity, damping is defined as stiffness-proportional type and no damping is applied to 
rocking component. 

Nonlinear component fex is transposed from the left-hand side (stiffness matrix) to the right-hand side (external 
load): 

exfKxxCxM −=++   (2.7) 

fex is defined as rocking reaction force, which is a nonlinear stiffness component and also can be expressed as a 
multiplication of mass matrix and gravity acceleration vector. 
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(2.8) 

By substituting equation(2.8) for equation(2.7), the motion equation (2.9) which regards rocking external force 
term as pseudo-gravity can be obtained. 

exxMKxxCxM  =++  (2.9) 

Equation(2.9) expresses both uplifting behavior and grounding behavior. The most impotant feature is that mass, 
stiffness and damping matrices are constant so that the left-hand side is a linear system. 
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Therefore it is possible to grasp the complex behavior of free vibration system with grounding and uplifting as 
the superposition of uplifting mode, whose rocking stiffness is zero, coherently during not only uplifting state 
but also grounding state. However, because there exists some rocking stiffness during ground state in reality, it is 
difficult to figure out the accurate behavior of grounding state if the rocking stiffness is small. The uplifting 
structure on the rigid ground is employed as a first approach so that grounding duration is almost zero. 
 

3. Modal decomposition of uplift structure and equilibrium position 
3.1 Modal decomposition of linear system which excludes nonlinear component 
Response of non-damping or proportional damping system x  is treated as the sum of responses of independent 
modal SDOF systems.  

Φyx =  

Φ :Mode matrix  y :Generalized mode displacement vector 
(2.10) 

By substituting equation(2.10) for equation(2.9), 

exxMyKΦyCΦyMΦ  =++  (2.11) 

By multiplying Φt and each term of the equation is shown below, 
* * *∗ + + =M y C y K y M η   

* = tM ΦMΦ    : Generalized mass 

ΦCΦC t* =      : Generalized damping 

ΦKΦK t* =     : Generalized stiffness 

ex
t* xΦMηM =   : Generalized gravity 

(2.12) 

Therefore, the motion equation of sth mode can be determined using the following equations: 

s s s s s s s sM y C y K y M η+ + =   (2.13) 
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From the above consideration, each modal response is treated as SDOF spring pendulum system under pseudo 
gravity. (Fig.3) 

 

 

 

 

 

 

 

 

Fig. 3 – Spring pendulum system under pseudo gravity 
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3.2 Rigid rotation 1st mode 

According to past related researches, 1st mode of uplifting structure is known as rigid rotation mode. Its natural 
frequency and lateral displacements ui (Fig.2) are zero, but rocking displacement only is non-zero. 

Eigenvalue problem of equation(2.11) is the following equation: 

0KΦΩMΦ =+t  (2.14) 

1,2,1 +==+Ω Nssss 0φKφM  

{ }ΩΩΩ= +121 N
t

Ω     : eigenvalue vector 
(2.15) 

Obviously, rigid rotation mode vector of the rocking model is expressed as the following equation(2.16). By 
substituting equation(2.16) for equation(2.15), it is found that this assumption is correct. 

{ }λ11

1

00φ

0

t=

=Ω      1λ is arbitrary  (2.16) 

Generalized mass, stiffness, damping, gravity and its acceleration are expressed as the following equations. 
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From the above equations (2.17) (2.18) (2.19) (2.20) (2.21), 1st mode does not have natural period and spring stiffenss. 

Therefore it is constantly affected by generalized gravity only as shown in equation(2.20).  

By substituting equation(2.18) (2.19) for equation(2.13), the motion equation of rigid rotaion 1st mode is 
expressed by the following equation: 
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During uplifting, MR is constant value equal to MUL, therefore 1st mode behavior is under the condtitions of 
uniform acceleration. 

 

3.3 Equilibrium position and limited equilibrium position of higher-mode SDOF 

In terms of higher-mode SDOF vibration, if each higher-mode is stationary or not vibrating at equilibrium 
position sy = syg under generalized gravity sM sη ,                 is substituted for equation(2.13). 

K
M

yMyK
s

ss
sssss

η
η =⇒= gg

 (2.23) 

From equation(2.23), it is found that equilibrium position sy is proportional to generalized gravity value sM sη. 
In contrast to higher mode, 1st mode does not have equilibrium position because 1K is zero. 

0s sy y= = 
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During uplifting, generalized gravity sM sη becomes constant, therefore equilibrium position sy also becomes 
constant. These constant values are defined as limited generalized gravity sM sηUL and limited equilibrium 
position syUL, respectively. 

K
M

yMyK
s

ss
sssss

UL
gULULgUL

η
η =⇒=  (2.24) 

4. Mechanism of higher-mode excitation 
As shown in equation(2.23), equilibrium position is proportional to generalized gravity value. Considering the 
character of equilibrium position as shown in chapter.3 and rocking restoring force characteristic as shown in 
Fig.2, the following facts can be understood.  

4.1 higher-mode excitation in a detach phenomenon (1st uplifting) 
Uplift behavior diagram of a higher-mode spring pendulum system on the rigid ground is shown in Fig.4. First 
uplifting is a change of the state from grounding to uplifting. When the structure stands on the ground vertically, 
rocking restoring force by gravity is zero and equilibrium position of the higher-mode spring pendulum is at 
the natural position. By contrast, when the structure is uplifted to the right direction, generalized gravity sM sηUL 
works vertically down on the higher-mode pendulums (in case of Fig.4). Then equilibrium position is also 
moved to the same direction. Equilibrium position is central axis of free vibration for spring pendulum system. 
Therefore, if it is assumed that the structure is on the rigid ground and equilibrium position is moved instantly to 
the limited equilibrium position, the spring pendulum behaviors as though it has amplitude of sygUL at that 
moment. After then, the spring pendulum goes to the same direction, and reaches the point which has maximum 
distance from natural position, sygUL+sygUL=2sygUL. 

4.2 higher-mode excitation in a landing-detach phenomenon (2nd or more times of uplifting) 
When the vibration which has occured with uplifting is sufficiently converged by damping, the spring pendulum 
is stationary at the limited equilibrium position sygUL. When the uplifting structure reaches to ground and starts to 
the next uplifting, generalized gravity sM sηUL works vertically up (in case of Fig.4). Then equilibrium position 
also moves to the same direction. Now, the spring pendulum behaviors as though it has amplitude of 2sygUL. 
After then, the pendulum goes to the same direction and reaches the point which has maximum distance from 
natural position,  sygUL+2sygUL =3sygUL. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 – Mechanism of generation of higher mode vibration 
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4.3 determinant of vibration amplitude of spring pendulum 

From the above consideration, in case of on the rigid ground as shown in Fig.5(a), equilibrium position syg 
instantly moves to another oppsite equilibrium position.On the other hand, in case of on the softer ground as 
shown in Fig.5(b), it takes time for equilibrium position syg to move to another oppsite equilibrium position. 
Therefore, vibration amplitude is reduced. 

 

 

 

 

 

 

 

 

 

Fig. 5 – Effect with difference of KR 

5. Numerical verification 
To verify the validity of this theory, eigenvalue analysis and free vibration analysis with initial velocity using 
10-storey lumped-mass model with rocking spring are carried out. The plan and elevation are shown in Fig.6 and 
the dimensions of this model are shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Plan                                                                   (b) Elevation 

Fig. 6 – Model Plan and Elevation 

 
 

 

 

 

 

 

 

 

 
(b)Small KR 

      

  

 

   

 

 

 

 

 
 

uplifting grounding uplifting 

θ 

-MUL 

MUL 

MR 

θUL 
−θUL 

KR 

 
 

 

 

 

 

 

 

 

 
  

      

(a)Large KR 

MR 

uplifting grounding uplifting 

θUL 

-MUL 

θ 

MUL 

−θUL 
KR 

   

 

 

 

 

 
 

 

7 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

Table 1 – 10-stoey lumped-mass model                    Table 2 – Specifications of each mode 
i ΣH i (m) m i  (t) I i  (t・m2) k i  (kN/m) K R(kNm/rad)

10 29.35 800 18930 2,504,005 －

9 26.44 789 18690 3,836,492 －

8 23.53 789 18690 4,979,611 －

7 20.62 789 18690 6,051,187 －

6 17.71 789 18690 7,189,547 －

5 14.8 797 18890 8,309,677 －

4 11.84 799 18940 9,758,189 －

3 8.88 799 18940 11,892,545 －

2 5.92 801 19000 14,337,205 －

1 2.96 804 19070 17,891,002 －

0 0 1240 29410 － 486,400,000     

1th 2th 3th 4th

Period sT - 0.1549 0.1088 0.0928

Generalized mass sM 2885857 1166 377 417
Generalized stiffness sK 0 1918271 1257861 1912446

Natural circular frequency sω 0 40.6 57.8 67.7
Participation factor sβ 0.045 -0.754 0.546 1.292

Equivalent mass sM 5844 663 112 696
Equivalent mass ratio 73.0% 8.3% 1.4% 8.7%

Generalized gravity acceleration sη UL -0.16 3.79 39.32 24.68
Generalized gravity force sMsη UL -450900 4417 14827 10292

Equilibrium position sy - 0.0023 0.0118 0.0054
Static potential energy sWes_blc - 5.1 87.4 27.7

Static potential energy ratio - 4.2% 72.4% 23.0%  
 

 

5.1 Eigenvalue Analysis 

The results of eigenvalue analysis are shown in Table2. sM,sK,sηUL are calculated by mode vectors which are 
generalized as the maximum value of the component is 1. sWes_gUL is static potential energy on the limited 
equilibrium position. If this value is large, that mode generates large vibration when uplifting. In case of this 
model, 3rd mode has the largest part of total sWes_gUL. 

The graphs of eigenvalue analysis are shown in Fig.7,8,9 and 10. Each of (a) to (d) are from 1st to 4th mode and 
(e) is the total vector of all modes. In Fig.8,9 and 10, the rigid line shows the total displacement, which is the 
sum of base rocking vector and deformation of structure. On the other hand, the dashed line shows base rocking 
vector only. So the difference vector of these two lines means the deformation of structure. 

Participation vector, which is modal decomposition of ground acceleration vector, is shown in Fig.7. On the 
other hand, Modal gravity acceleration vector, which is modal decomposition of gravity acceleration vector  
during uplifting, or equation(2.8), is shown in Fig.8. In Fig.7, 1st mode has the largest contribution. But in Fig.8, 
higher mode (3rd mode in this case) has the largest contribution. Participation of each mode varies according to 
assumed force vector. This fact is also pointed out in Ref [4] and is important to understand behavior of the 
uplifting structure. When the structure is not uplifting, participation vector (Fig.7) and effective mass calculated 
by the vector are the important indexes of modal analysis. On the other hand, when the structure is uplifting, 
modal gravity acceleration vector (Fig.8) is also an important index of modal analysis. 

Modal displacement vector when the mode is on the limited equilibrium position is shown in Fig.9. This is the 
situation when the structure is in equilibrium with Generalized Mass sM (equation (2.24)). When the structure is 
in this situation, the modal spring pendulum is on the “Limited equilibrium position” in Fig.4. By contrast, 
because 1st mode has no stiffness, it is not in this situation or on the position. 

Shear coefficient of each mode when the mode has the displacement in Fig.9, is shown in Fig.10. This is the 
important basic value when assuming shear response by higher mode vibration during uplifting. More 
explanation about this is given in the next section, 5.2. 
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Fig. 7 – Participation vector (uniform horizontal unit acceleration at every story) 
 

 

 

 

 

 

 

 

Fig. 8 – Modal gravity acceleration vector 
 

 

 

 

 

 

 

 

Fig. 9 – Modal displacement vector (at limited equilibrium position) 
 

 

 

 

 

 

 

 

Fig. 10 – Modal shear coefficient (at limited equilibrium position) 
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5.2 Free Vibration Analysis 

Free vibration analyses with initial velocity are carried out. The conditions of analyses are shown below. 

i) Newmark-β method (β = 1/4),  dt=1/1000 sec 

ii) The initial velocities of superstructure except rocking 0=iu  

iii) The initial rocking displacement 00 =θ  and initial rocking velocity mkN140940 ⋅=θ  

iv) The rocking stiffness of ground is 100 times KR in Table1 in the case of  hard ground, Fig.11(a).  

v) The rocking stiffness of ground is 0.5 times KR in Table1 in the case of  soft ground, Fig.11(b). 

The results of these analyses and the modal decompositions of those are shown in Fig.11.  

The dashed line, 28.0B_gUL =C means total base shear coefficient when all modes are at limited equilibrium 

position. This value is the sum of all modal shear coefficients B_gULCs , at limited equilibrium position. Reffering 
to Fig.10, the coefficients of 2nd, 3rd and 4th mode B_gUL2 C , B_gUL3C  and B_gUL4 C are -0.04, 0.10 and 0.17, 
respectively. In the both cases of Fig.11(a) and (b), the each center of vibration of each higher mode and the sum 
of all modes is identical (-0.04, 0.10, 0.17 and 0.28, respectively). As just shown, the center of higher modal and 
total vibrations are always each limited equilibrium positions respectively regardless of ground stiffness. On 
the other hand, 1st mode is rigid rocking mode which has no stiffness and it does not support any shear force. 

Firstly, focus on the first uplifting - around 0 sec - of Fig.11(a), in the case of rigid ground. The maximum 
response of base shear coefficient in 2nd, 3rd and 4th modes are -0.08, 0.20 and 0.34, respectively. These values 
are almost twice as much as B_gULCs  as described in section 4.1. But the maximum response of total base shear 
coefficient is not twice as much as B_gULC  because each mode does not reach the maximum response at the same 
time.  

Then, focus on the second uplifting - around 1.3 sec – in Fig.11(a). The responses of 2nd, 3rd and 4th mode are 
0.11, -0.28 and -0.41, respectively. These are approximately three times as much as B_gULCs  as described in 
section 4.2. However, it is a little smaller than exact three times because of the damping of 
superstructure.  
On the other hand, the case of soft ground is shown in Fig.11(b). If the ground stiffness is smaller, the maximum 
response of higher mode is smaller. If the ground is hard, the time from landing to next uplifting is short and 
equilibrium position moves instantly. By contrast, if the ground is soft, the time from landing to next uplifting is 
relatively longer and equilibrium position moves slowly. This is the reason why the two sets of base shear 
coefficients vary according to ground stiffness. It is easy to imagine that the vibration of the spring pendulum 
becomes small if the gravity force works slowly. 

As explained in above, under the ideal condition, the maximum response of higher mode vibration is twice as 
much as limited equilibrium position at first uplifting and is three times as much as limited equilibrium position 
at second uplifting. But in Fig.11(a), the response of total modes is a little smaller than that because of the 
damping of superstructure. Furthermore, in Fig.11(b), the response is more smaller because of the ground 
softness.     
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(a) Hard Ground (h=1%)                 (b) Soft Ground (h=1%) 

Fig. 11 – Time history of modal base shear coefficient 

6. Conclusions 
In this paper, in order to investigate the dynamic behavior with grounding and uplifting, the approximated modal 
analysis method, which assumes that the non-linear component is treated as an external force, is applied to 
nonlinear problem. From the results, the conclusions are summarized as follows: 

(1) Higher-mode vibration of a structure with uplift is amplified by movement of equilibrium position due to 
change of pseudo gravity value or direction in the spring pendulum system of each mode. 

(2) The traveling distance between two limited equilibrium positions, during Landing-Detach Phenomenon, is 
twice the distance during Detach Phenomenon. Hence, the amplitude of each mode is also doubled if it is 
initially stationary at limited equilibrium position with no damping on perfectly rigid ground. 

(3) As for the response of each mode during uplift under the same conditions of (2), the response during Detach 
Phenomenon is twice as large as the absolute value of  limited equilibrium position, and the response during 
Landing-Detach Phenomenon is three times the absolute value of limited equilibrium position. 

(4) Movement of equilibrium position will change gently and the occurrence of vibration is mitigated if soil 
stiffness becomes soft or the structure has more damping. 
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8. The definitions of some technical words 
In this paper, some technical words are used as below definitions. 

Uplifting: the state that one side of foundation corner are untouched with ground. 

Grounding: the state that both sides of foundation corner are touched with ground. 

Landing: the moment when the structure changes from uplifting state to grounding state 

Detachment: the moment when the structure changes from grounding state to uplifting state 

Detach phenomenon: the phenomenon from grounding to uplifting over the detachment 

Landing-detach phenomenon: the phenomenon from uplifting to opposite side of uplifting over the landing, 
grounding and detachment 

Grounding mode: the mode of grounding structure whose rocking stiffness is positive value 

Uplifting mode: the mode of uplifting structure whose rocking stiffness is zero 
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Fig. 12 – The definitions of uplifting, grounding, landing and detachment 
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