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Abstract 
Due to the taller reinforced concrete (RC) buildings that have been constructed in recent years, shear walls at lower levels 
are subjected to higher axial loads and bending moments. Although complex finite element inelastic models for shear walls 
can effectively couple several effects at the stress-strain level, they are computationally demanding, and hence robust and 
computationally efficient models are necessary to quickly assess the earthquake performance of these buildings. Herein, a 
pure two-node fiber element model that takes into account axial and bending components only, was modified to produce 
objective results under common loading conditions of the walls identified in Chilean buildings, i.e., high axial loads with 
linear bending moment variation between floors. A regularization is required to predict results independent of the element 
size and a shear model based on the modified compression field theory was added into this element to simulate the behavior 
of shear walls adequately. This investigation focuses in the formulation of the proposed model, its validation with 
experimental tests reported in the literature, and its application to actual RC walls of buildings. It was found that the steel 
stress-strain constitutive behavior, the inclusion of shear deformation, and the strain penetration effects played an important 
role in reproducing the experimental behavior of walls. Additionally, the proposed model is able to predict the observed 
collapse mechanisms of walls in buildings damaged during the 2010 earthquake. Since the element is capable of 
reproducing experimental tests and earthquake response, and since it is numerically more efficient than other approaches, its 
use for complete 3D inelastic dynamic analysis of buildings is promising. 
Keywords: reinforced concrete, fiber model, wall, regularization 
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1. Introduction 
Reinforced concrete (RC) walls are of common use in seismic countries since they have shown a good 
performance in previous massive earthquakes such as the 1985, Chile earthquake [1]. Following this success, 
most residential buildings in Chile are still based on RC walls deployed in plan as a fish-bone like structure. 
During the 2010 Chile earthquake most of RC wall buildings behaved well, and around 2% of buildings taller 
than 5 stories suffered severe damage [2] including one complete collapse [3]. A common observed damage 
consisted of concrete crushing, and buckling and fracture of vertical reinforcement localized in walls at the lower 
levels of buildings. This kind of damage can be attributed to: (1) taller buildings producing higher axial and 
shear loads on walls; (2) the presence of irregularities along the height of the building (3) poor wall confinement; 
and (4) thinner walls. 

Analyzing three-dimensional inelastic models of such buildings with hundreds of thousands degrees of 
freedom is still a difficult task due to the huge computational cost and validation of inelastic models. However, 
since damage was localized in the first stories of buildings, it is reasonable to concentrate nonlinearities only in 
critical elements that control the inelastic response.  Additionally, desired characteristics of inelastic models are: 
(1) responses have to be objective, i.e, they should not be mesh dependent; (2) the computational cost should be 
minimal while keeping adequate accuracy, and (3) the definition of parameters should not need calibration. 

Among the numerous RC concrete models, force-based fiber elements (FFE) are a good choice compared 
to other modeling approach such as 2D/3D shell finite elements, because FFE are simple, robust and use limited 
amount of  memory. However, two critical issues of FFE to model RC walls are: (1) lack of coupling between 
shear and axial-bending behavior, and (2) numerical localization of deformations at the most demanded section, 
which is induced when softening materials are used. To solve the first issue, two major approaches have been 
taken. The first one is to impose equilibrium in the transverse direction of the wall at the local level [4, 5, 6] 
adding one level of iteration when determining the fiber’s state, thus increasing the computational effort. The 
second approach combines flexural and shear sub-elements, and does not impose transverse equilibrium locally 
[7, 8]. This latter approach is less computationally expensive than the first approach but the coupling effect are 
weaker. 

For the numerical localization issue, two approaches have been proposed in the literature. The first one is 
to modify the integration scheme such that the integration length associated to the end points matches the desired 
plastic hinge length [9, 10]. The second one is to modify the strain-stress curves by keeping the post peak 
fracture energy constant, making the constitutive relationship mesh dependent [11, 12]. 

This paper presents a force based wall element (FWE) composed of a FFE including a modified 
regularization technique, coupled to a shear model at the element level, and its application to one structural 
element and to complex walls within buildings. 

2. Formulation of the element  
The FWE consist of two sub-elements connected in parallel as shown in Figure 1a: (1) a fiber element that 
accounts for the axial and bending behavior, and (2) a pure shear element. Torsion in the element is assumed to 
remain linear-elastic. The main equations are presented here and the detailed formulation can be found elsewhere 
[13]. The three equations imposed in the flexibility method are: (1) equilibrium, (2) force-deformation 
constitutive relationship, and (3) kinematics. In order to apply these equations, a cantilever element was chosen 
as the basic system. The equilibrium equation reads 
 

𝑫(𝑥) = 𝒃(𝑥)𝑸              (1) 
Where 𝑸 = �𝑁,𝑀𝑦,𝑀𝑧,𝑉𝑦,𝑉𝑧,𝑇�𝑇is the total nodal forces at the free node, which components are the axial force 
𝑁, the bending moments 𝑀𝑦 and 𝑀𝑧 about the 𝑦 and 𝑧 axes, the shear forces 𝑉𝑦 and 𝑉𝑧 along the 𝑦 and 𝑧 axes, 
and the torsional moment 𝑇. 𝑫(𝑥) = �𝑁(𝑥),𝑀𝑦(𝑥),𝑀𝑍(𝑥),𝑉𝑦(𝑥),𝑉𝑧(𝑥),𝑇(𝑥)�𝑇 is the section forces at every 
point along the longitudinal axis 𝑥 of the element of length L, and 𝒃(𝑥) is the equilibrium matrix. The force-
deformation relationship relates the section forces 𝑫(𝑥) with the section deformations 
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𝒅(𝑥) = �𝜀(𝑥), 𝜅y(𝑥), 𝜅𝑧(𝑥),𝛾𝑥𝑦(𝑥), 𝛾𝑥𝑧(𝑥), 𝛾𝑡(𝑥)�𝑇where 𝜀, 𝜅 and 𝛾 are conjugate quantities (in work terms) to 
𝑫(𝑥) and denote axial deformation, curvature, and angular distortion, respectively. The incremental force-
deformation equation reads 

Δ𝒅(𝑥) = 𝒇(𝑥)Δ𝑫(𝑥)                                                        (2) 

Where  𝒇(𝑥) is the complete section flexibility matrix defined as: 

𝒇(𝑥) =

⎣
⎢
⎢
⎡
𝒇𝐴𝐹3𝑥3 𝟎3𝑥1 𝟎3𝑥1 𝟎3𝑥1
𝟎1𝑥3 𝑓𝑆𝑦 0 0
𝟎1𝑥3 0 𝑓𝑆𝑧 0
𝟎1𝑥3 0 0 𝑓𝑇 ⎦

⎥
⎥
⎤
                                                  (3) 

and 𝒇𝐴𝐹 is the section flexibility matrix due to the axial and bending component; 𝑓𝑆𝑦, 𝑓𝑆𝑧, and 𝑓𝑇 are the section 
shear flexibilities in the 𝑦-, 𝑧-, and torsional directions, respectively. In this formulation, the axial and bending 
behavior is coupled at the section level, as opposed to the shear and torsion behavior.  
Finally, after applying the kinematic equation through the complementary virtual work principle, in combination 
with Eq. (1) and Eq. (2), one gets: 

𝑭Δ𝑸 = Δ𝒒          (4) 

Where Δ𝒒 is the increment of the element displacement vector, and 𝑭 = ∫ 𝒃(𝑥)𝑇𝒇(𝑥)𝒃 (𝑥)𝑑𝑥𝐿
0  is the element 

flexibility matrix. The term 𝒃(𝑥)𝑇𝒇(𝑥)𝒃 (𝑥) is responsible of coupling shear and the axial and bending 
component as in Timoshenko beam theory, keeping torsion completely uncoupled. 
 

 
Fig. 1 – Internal operation of FWE: (a) mechanical behavior, and (b) numeric procedure to determine the 

element state. 
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To integrate 𝑭 and to compute the resisting forces 𝑸, all variables depending on 𝑥 are evaluated at 
quadrature points along the longitudinal axis of the wall and then summed over with the corresponding weights. 
Locations and weights are given by the Gauss-Lobatto integration scheme, which has the advantage of including 
points at the edge of the element, where demands are higher under absence of forces along the element. Since 
FWE is forced based, an iterative procedure is needed to compute element forces and stiffness for a given nodal 
displacement, as shown schematically in Figure 1b. The complete algorithm can be found elsewhere [13]. 

2.1 Axial and bending behavior: Fiber model 

The axial and bending behavior are modeled using a FFE proposed elsewhere [14], where perfect bond between 
steel and concrete is assumed. Shown in Figure 2 is the use of this model in the FWE with fibers of two kinds: 
concrete, and steel. The constitutive relationship of concrete fibers use the well-known Kent & Park model and 
tension stress is neglected. On the other hand, the steel constitutive curve is based on [15], that includes strain 
hardening, Bauschinger effect, and bar buckling, and the softening branch depends on the slenderness of the 
bars. Further details can be found elsewhere [13]. 

 
Fig. 2 – Fiber model of restrained element with concrete and steel fibers 

2.2 Shear component 

As seen in Figure 1a, shear deformations are included using a pure shear sub-element developed earlier [13] 
whose constitutive relationship is shown in Figure 3a and 3b. This constitutive is assumed to be uniform along 
the cross section, as in Timoshenko beam theory, and it is used independently in both directions of the wall. A 
typical macro model with no shear failure consists of two points: the cracking point (𝛾𝑐𝑟 , 𝜏𝑐𝑟) and the yielding 
point (𝛾𝑦, 𝜏𝑦), which represents the peak shear strength (Figure 3a). However, in a bending-compression 
dominant behavior, the yielding point in this curve is not reached, and failure begins at (𝛾𝑓𝑙𝑒𝑥 , 𝜏𝑓𝑙𝑒𝑥) driven by 
the bending-compression failure. After this point, the section degrades until it reaches complete failure (𝛾𝑓 , 𝜏𝑓). 
The first portion of the shear constitute curve is linear elastic with shear stiffness G=0.4Ec, where Ec is the 
modulus of elasticity of concrete. After (𝛾𝑐𝑟, 𝜏𝑐𝑟), the cracked shear stiffness is estimated using the modified 
compression field theory (MCFT) and due to lack of data, the softening stiffness 𝐺𝑠𝑜𝑓𝑡 has been assumed to be   
-0.4Ec.  Finally, the 𝜏 − 𝛾 curve is modified as axial load varies, as shown in Figure 3b. For this implementation, 
the backbone curve is described as a function of the axial load by using the MCFT, and the shear strength 
increases as the axial load increases (se Figure 3b). More details are available elsewhere [13]. 
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Fig. 3 – Shear model coupled with axial load.  

3. Objectiveness in the global response  
Experimentally, when softening material are used, deformations localize in a limited region in the most 
demanded zone. This phenomenon is known as localization, and is characterized by large deformations and 
concentration of damage. When subjected to compression, concrete and steel soften after reaching maximum 
strength due to crushing and buckling respectively. For this reason, RC walls subjected to bending and 
compression present a localized behavior forming the well-known plastic hinge. A localized behavior was also 
observed during the 2010 Chile earthquake, where buildings presented localized damage. Localization of 
deformations is also present in numerical analyses, particularly when using the FWE. If the predicted global 
response depends on the number of integration points used along the element, the response is not objective. In 
these cases, damage is localized in the most demanded element section, whose length, 𝐿𝑖, depends on the number 
of integration points: 𝐿𝑖 = 𝑤𝑖𝐿, where 𝑤𝑖 is the weight resulting from the numerical integration scheme, and it’s 
a function of the number of integration points.  

 The proposed regularization procedure proposed to obtain objective global responses was based on the 
modifications of the constitutive curves of concrete and steel [12, 14], and is denoted as energy regularization. 
However, a small yet profound modification is also needed to achieve objective responses for different load 
cases. The energy regularization method, first proposed elsewhere [14] modifies the softening branch of concrete 
and steel constitutive curves, as shown in Figure 4a2, where the softening slope becomes steeper as the 
integration length becomes larger. However, localization starts when the global strength is reached, and not 
necessarily when fibers reach their local strength [13, 16]. In general, the global strength does not coincide with 
fibers strength, meaning that the modification of the softening slope should not start immediately when the fiber 
strength is reached, as in Figure 4a3. In this study three situations where the original energy regularization 
method didn’t produce objective results are: (1) high axial load ratios, say axial load to gross section area ratios, 
ALR>35%; (2) low axial load ratios, say ALR<5%; and (3) in regions of fairly constant bending moment, where 
section forces and deformations are similar at different integration points and any section may soften. Figure 4a 
shows schematically the regularization used for concrete in each row of the figure. To the right, Figure 4b and 
Figure 4c show numerical results after applying these regularization techniques for ALR=40% and ALR=0% 
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respectively. The wall used to produce these curves has a U-shaped cross section loaded along the Y direction 
(web direction) [17]. This wall is detailed in the next section. 

 
Fig. 4 – Comparison of different regularization techniques applied to a cantilever wall, using three regularization 
techniques: (a1) no regularization, (a2) energy regularization, and (a3) proposed regularization, for two loading 

cases: (b) ALR=40%, and (c) for ALR = 0%. Compression is shown as positive in column (a) 

Finally, as the shear model also has a softening region (Figure 3a), the same energy regularization 
approach is used. However, since the global shear strength always coincide with the section (local) shear 
strength, the modification shown in Figure 4a3 is not require for the shear behavior. The detailed explanation can 
be found elsewhere [16]. 

4. Comparison against test results 
The proposed model was tested using four different shear wall configurations in a cantilever-like loading 
configuration: a U-shaped wall denoted as USW1 [17]; a T-shaped wall denoted as NTW1 [18]; and two 
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rectangular specimens WSH3 and WSH4 [19]. Table 1 summarizes some geometric properties of these walls. 
Parameters 𝜌𝑤𝑒𝑏 and 𝜌𝑓𝑙𝑎𝑛𝑔𝑒 are the transverse steel ratio in the web and flange direction, respectively, and are 
computed by neglecting the additional reinforcement in boundary zones. The walls were tested under uniaxial or 
biaxial loading directions, Table 1. In case of USW1, the web is taken as the direction parallel to the two vertical 
elements of the U; in case of NTW1, the direction where the wall is longer; and for the rectangular walls, the 
web is taken as the main direction. 

Table 2 summarizes the concrete mechanical properties of the selected walls. Parameter 𝑓𝑐′ is the 
compressive strength of plain concrete, and the concrete strain at this stress was assumed to be 0.002 for all 
walls; 𝑓𝑐𝑐𝑓𝑙𝑎𝑛𝑔𝑒

′  is the concrete strength in confined zones along the flange and 𝑓𝑐𝑐𝑤𝑒𝑏
′  is the concrete strength in 

confined zones along the web. For the USW1 wall, the confined concrete zone in corners was labeled as 
𝑓𝑐𝑐𝑓𝑙𝑎𝑛𝑔𝑒

′ . The same nomenclature applies for the crushing energies 𝐺𝑐𝑐𝑤𝑒𝑏  and 𝐺𝑐𝑐𝑓𝑙𝑎𝑛𝑔𝑒  estimated using the 
average from the two different models [20] and [21]. Note that WSH4 does not have a confined zone as all the 
other specimens. The value 𝐺𝑐 was calculated using 𝐺𝑐 = 8.8�𝑓𝑐′ with 𝑓𝑐′ in MPa and 𝐺𝑐 in MPa-mm [22]. For 
strain penetration effects, the additional section at the base of the wall was modeled using Kent & Park model 
with a horizontal  softening slope and the parameters for steel following the model found elsewhere [23], 
𝑅𝑒 = 0.99, 𝑅𝑐 = 1, and 𝑏 = 0.4. 

Table 1. Geometric characteristics and axial load of the sample walls. 

Wall Thicknes
s [cm] 

Area 
[𝒎𝟐] 

Shear 
span [m] 

𝝆𝒘𝒆𝒃  𝝆𝒇𝒍𝒂𝒏𝒈𝒆 ALR 
[%] 

Loading 
direction 

NTW1 15.25 0.602 7.93 0.0062 0.0027 2.75 Biaxial 
USW1 25 0.875 3.90 0.0053 0.0032 10.00 Uniaxial 
WSH3 15 0.3 4.56 0.0025 - 5.30 Uniaxial 
WSH4 15 0.3 4.56 0.0025 - 5.20 Uniaxial 

 

Table 2. Concrete Mechanical properties of the walls.  

Wall 𝒇𝒄′  
[MPa] 

𝒇𝒄𝒄𝒇𝒍𝒂𝒏𝒈𝒆
′   

[MPa] 
𝒇𝒄𝒄𝒘𝒆𝒃

′  
[MPa] 

𝑮𝒄    
[MPa-m] 

𝑮𝒄𝒄𝒇𝒍𝒂𝒏𝒈𝒆 
[MPa-m] 

𝑮𝒄𝒄𝒘𝒆𝒃 
[MPa-m] 

NTW1 50.00 60.42 63.4 0.062 0.526 0.730 
USW1 23.73 31.87 33.0 0.043 0.314 0.332 
WSH3 39.20 - 46.1 0.057 - 0.350 
WSH4 40.90 - - 0.057 - - 

 

The comparison between the experimental and analytically predicted force-displacement curves of the 
cyclic tests of the four walls are shown in Figure 5. Plots a) and b) show the results for NTW1 along the web and 
flange directions respectively, where the general shape of the curves is estimated well, achieving similar 
maximum strength, ductility, and a reasonable unloading a reloading slopes. However, a more detailed 
comparison shows that, the analytical degradation in Figure 5a is larger than the experimental one. This larger 
degradation can be attributed to bond slip not accounted for in the model and the fixed end rotation could be 
underestimated for larger cycles due to the approximated modeling approach for this effect. Furthermore, the 
differences in the unloading paths in both directions can be attributed to the shear lag effect. Figure 5c shows a 
good estimation for wall USW1, except for the maximum strength, which is underestimated by 9%. 
Additionally, the model predicts more pinching than that of the experiment, because the model neglects the crack 
closure effects. Figures 5d and 5e show results for two rectangular walls, WSH3 and WSH4. Again, the general 
path is in agreement with experimental results, although the maximum strength is slightly underestimated (in 
about 2%) and there is a marked pinching in the analytical curves. However, it is worth noting that ductility is 
achieved adequately, and the abrupt loss in resistance occurs for similar displacement (errors less than 20%). The 
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failure pattern of walls WSH3 and WSH4 is characterized by a crushed concrete and fracture of the outermost 
reinforcing bars due to high tensile strains in both the actual specimens and the analytical models. 

 

 
Fig. 5 – Comparison of the analytical and experimental force displacement responses for: a) NTW1 in web 

direction, b) NTW1 in flange direction, c) USW1 in flange direction, d) WSH3, and e) WSH4. 

Figure 6 shows the shear component of three walls using available information in the literature. The first 
row of plots, Figure a-c, shows the fraction of shear displacements to total displacements in case of NTW1 
(Figure 6a) and the fraction of shear displacements to flexural displacements for: b) WSH3, and c) WSH4. The 
second row of plots, Figure d-f, show the shear force-deformation curves after cyclic analyses of the most 
demanded section–the one closer to the foundation. From plots a) to c), it can be seen than errors are bigger than 
the total responses shown in Figure 5; however, the proposed model is clearly a better approximation that an 
elastic one, which is mainly because the proposed model includes a cracking zone where the section shear 
stiffness is greatly reduced (approximately it is reduced to 5% of the elastic one). Figure a) and d) shows a clear 
drawback of the shear model; it is a symmetric macro model uncoupled in both directions and from flexural 
effects. In the web direction, when flange is in tension the well-known shear lag effect [24] is produced and then 
the behavior is very different relative to the case when flange is in compression. Moreover, the lateral strength of 
the web when the flange is in tension doubles that of the flange in compression, and the proposed model does not 
capture this. The model assigns a symmetric rectangular shear area equal to the web of the wall in that direction. 
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Finally, although unloading and reloading paths are secant, this does not appear to have a big impact in the 
overall response. 

 
Fig. 6 – Comparison of shear responses between analytical and experimental results for: a) NTW1 in web 
direction, b) WSH3, and c) WSH4, and numerical cyclic shear responses for d) NTW1 in web direction, e) 

WSH3, and f) WSH4. 

5. Modeling of walls with irregularities  
Actual walls within buildings have irregularities in height. Their modeling is straightforward if we use shell 
elements; however, in the case of FWE that assumes plane sections remaining plane after deformation, special 
care must be taken in the critical zones. For simplicity, the elastic case is studied so that deformations using the 
FWE with elastic properties (E=22560 MPa) match those coming from shell element analysis using SAP2000 
v15. The chosen T-shaped wall belongs to a building in Santiago, Chile, that suffered severe damage during the 
2010 earthquake, and the detailing of the wall can be found elsewhere [25].  Figure 7a shows the 3D base model 
without the irregularity and the direction of the lateral force in the subsequent pushover analyses. Figure 7b 
shows its deformation when the wall is subjected to a lateral force of 687 kN at the top. The error of the 
displacements coming from the FWE model in comparison with the shell model is below 4% at all story levels 
(see Figure 7c). In this case the shear area used was the portion of the wall parallel to the force. Figure 7d shows 
the shell analysis of the cantilever wall with the irregularity near the bottom, where the length of the wall is 1.2m 
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shorter in the first 6m of the wall in height. In the zoom up, the angle 𝜃 represents how the effective length of the 
FWE changes over the height of the wall, so that the hatched area at the corner represents no wall at all. As it is 
expected, using the same geometry than that of shell elements (𝜃 = 90°), the FWE model underestimates 
deformations (solid blue line in Figure7e), which is due to the plane section assumption that introduces a false 
stiffness around the irregularity; however, as the angle 𝜃 decreases, the effective length is reduced further away 
from the irregularity, and the model no longer overestimates deformations (dashed lines). 

 
Fig. 7 – Comparison of linear elastic analysis using shell elements and FWE of a T-shaped wall shown in a). The 
shell analysis of the wall without irregularities in b), is compared to the analysis using several FWEs in c), while 
the shell analysis including the irregularity shown in d) is compared to the analysis with FWE using a variable 

effective wall length in the irregularity zone in e). 

Finally, the wall with 𝜃=30° was loaded with the lateral first mode shape of the building, and the vertical 
component was simply modeled as a constant total axial load of 19600 kN known from previous studies [25]. 
Due to the weight of a garden just above the irregularity, the axial load was not distributed equally on all stories. 
The story just below the irregularity had 491 kN more load than the others. Then, the critical zone had an ALR 
of 45% (the ALR at the base was 47.2%).  The nonlinear material properties used were: concrete strength, 
𝑓𝑐′ = 0.25𝑡𝑜𝑛/𝑐𝑚2, strain at this stress, 𝜀0 = −0.002, modulus of elasticity of steel, 𝐸𝑠 =206010 MPa, yield 
stress 𝐹𝑦𝑖𝑒𝑙𝑑 =412 MPa, ultimate strain, 𝜀𝑢 = 0.15, buckling length of reinforcing bars, 𝐿𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 =0.2m, and 
concrete crushing energy 𝐺𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔 =44 kN/m. 

Figure 8 shows the graphical results of the simulated damage of the pushover. The color black indicates 
the largest deformation reached in the analysis, and the gray color indicates a deformation smaller than 𝜀0. It is 
apparent than the simulated failure is pretty similar to the actual one; it occurs at the same height and it tends to 
spread toward the opposite corner. The force-deformation state is shown for a roof displacement of 17.22 cm 
where the wall was not able to withstand the axial load. This was the end of the analysis, but it does not mean 
that the model can no longer predict what would have happened next under expected circumstances. This only 
means that the model cannot solve situations where the softening slope is vertical or even positive (snapback 
situation). In fact, a more appropriate load pattern is the use of vertical displacements, which actually result in 
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variable axial loads, and after peak resistance, a decrease in axial loads is expected usually, which is exactly 
what happened in the pushover and dynamic analyses carried out elsewhere [25]. 

 
Fig. 8 – Comparison of analytical an actual damage between: a) actual wall damage during the 2010, Chile 

earthquake, and b) simulated damage from a pushover analysis depicted as a function of strain. Black correspond 
to the most damaged zone 

6. Conclusions 
This article summarizes the formulation of a regularized fiber element to simulate the seismic behavior 
of reinforced concrete walls, additionally, the article summarizes the results of validation tests and 
applications. Special effort was placed in obtaining objective responses, which are mesh independent.  

It is concluded that the proposed FWE is able to reproduce the extreme cyclic behavior of 
experimental rectangular and non-rectangular walls. Realistic nonlinear effects are accounted for such 
as softening of concrete, bar buckling, Bauschinger’s effect, inelastic shear, and strain penetration 
effects. Additionally, the resulting FWE is mesh independent for a wide range of loading conditions 
thanks to the proposed regularization method. 

The information regarding concrete and steel constitutive curves available in the literature is 
enough to accurately use the FWE, though calibration is needed for the steel if high tensile strains are 
expected. Therefore, the FWE is ready to be used in dynamic models of actual buildings. Common 
vertical irregularities can be modeled using a single element per story, and hence, the model should be 
able to provide accurate results at a rather low computational cost. 
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