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Abstract 
Housner published his classical paper in 1963 for the calculation of a rocking block. He assumed that impact occurs at the 
corners of the block and identical angular momentum before and after the impact. Based on these assumptions he derived 
expressions for both the energy loss, and the change in velocity. 

This model is widely used for modeling of stone and masonry columns and arches. Researchers also developed the so called 
‘overturning acceleration spectra’ for the verification of blocks, columns and arches subjected to earthquakes. In all these 
cases the basic element of the calculation is Housner’s classical model. Note, however that experiments – as published in 
several papers – show lower energy loss during impact than it is predicted by Housner’s model. As a consequence, the 
overturning acceleration spectra based on Housner’s model may be unsafe. 

In this paper we discuss the effect of the overprediction of the energy loss of Housner’s model. Furthermore, the effect of the 
shape of the applied acceleration is investigated. 
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1. Introduction 

Modelling of masonry and stone columns and arches must include the possible openings and closings of the cracks 
between the elements which require the use of an impact model. In most of the cases Housner’s model is applied.  

Housner published his classical paper more than five decades ago [1], in which he presented a simple model 
for the rocking block (Fig. 1). He investigated a block which rotates around corner A, then – when the block 
reaches the vertical position – impact occurs, and the block rotates further around corner B. Assuming identical 
angular momentum on corner B before and after the impact (Fig. 1c), he arrived at the following expression for 
the angular velocity of the block: 
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where ωb and ωa are the angular velocities before and after rocking, h and b are the dimensions of the block, µ is 
the angular velocity ratio. 

The rocking block was investigated experimentally by several researchers ([2], [3], [4] and [5], [6] ). In 
almost every case it was found that in the experiments the energy loss (and the decrease in angular velocity) is 
smaller than the one predicted by Housner’s model. 

In spite of the inaccuracies, Housner’s model is widely applied to determine overturning acceleration spectra 
or stability maps to analyze the stability of a single rocking block [1], [3], [7]–[15]. [16] extended this for the 
investigation of arches and [17], [18] defined stability maps for impulse-ground motions. Housner’s model was 
also extended to investigate non-symmetric monolith blocks [8], [19] and two [20], [21] or multi degree of freedom 
structures [22]. 

In this paper we focus on the investigation of a single block, the analysis of columns and arches will be 
treated in companion papers. Since the overturning acceleration spectra (OAS) is calculated on the basis of 
Housner’s model – which over predicts the energy loss – its usage is unconservative. Furthermore, the OAS is 
always calculated from an impulse of a given shape, however the effect of the shape is not investigated in a 
systematic way. 

2. Problem statement 
 A simple rigid block of arbitrary aspect ratios (b/h) is considered which is subjected to a pulse-like ground motion 
shown in Fig. 2. The OAS curves are calculated taking into account the impact due to Housners’s model, and also, 
as an approximation on the safe side, assuming zero energy dissipation during impact. 

 

Fig. 1 – Rocking block in Housner’s model 
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Fig. 2 – The pulse-like ground motions considered in the article. ap is the maximum acceleration and tp is the 

corresponding duration. Fullness is defined as � � � ����/����
��
� , while skewness as � � � �����/

��
� � ����

��
� . 

(The skewness is 0.5 in every case, where it is not given.) The consecutive impulses have the same shape (with 
opposite sign) in every case except in the last row. 

3. Model 

A model was developed which is capable to calculate the rocking motion of a column made of rigid blocks. In this 
paper the motion of the monolithic column i.e. a single block is investigated. During the motion, the geometry is 
updated, hence the second order effects are taken into account. The only considered damping effect is the one 
which occurs during the impact. It is assumed that the motion is 2D, there is no sliding between the ground and 
the element, and the strength of the masonry is not investigated. 
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4. The shape of the overturning acceleration spectra 

The unnormalized OAS curve is a plot in the ap-tp coordinate system, where ap is the maximum acceleration of the 
given impulse, and tp is the duration of this impact. The curve separates the safe and unsafe areas, i.e. where 
overturning does not or does occur. Three examples are shown in Fig. 3, the unsafe areas are shaded, while the 
safe areas are white. Below ap,min defined as  

 �p,min �  !/" (2) 
  
no rocking happens, hence it is always safe. 

When there is only one impulse (Fig. 3a), the OAS is monotonic: higher ap and longer pulse more likely 
cause overturning than lower ap or shorter tp. According to [14], this boundary is called Mode 2 failure.  

If there are two consecutive impulses with different signs (Fig. 3b) there is a narrow safe area within the 
unsafe zone. According to [14], this boundary is called Mode 1 failure. These zones were investigated by several 
researchers ([11], [12], [14], [15]). 

 

Fig. 3 – Typical overturning acceleration spectra for ground motion with 1, 2 and 3 consecutive impulses 

In Fig. 4 the motion of a block is given for 5 different impulses defined by number 1 to 5 in Fig. 3b. In all 
the cases the maximum accelerations are identical, however the lengths of the impulses are different. 

 

Fig. 4 – Motion of the rocking block for different impulses 
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When there are three consecutive impulses even more narrow areas or “bays” may occur (Fig. 3c). Since 
these narrow areas has no practical importance, in the following sections we will investigate only the outer 
envelope of the OAS curves. 

5. Results 
In the analysis the following parameters were investigated 

• slenderness ration h/b=3, 5, 8, 10 
• shape of the pulse: rectangular, sinusoidal, triangular (Fig. 2) 
• skewness of the shape of the pulse 

• parameters of the second impulse: a2=a1; a2=a1/2; a2=a1/3, a2=2a1, a2=3a1 while � �#�� �
�$
� � �
��

��
�  

and a2=0 (see the last row of Fig. 2)  
• the parameter range of each stability map is ap= 0 - 10 m/s2, tp= 0 - 2.5 s 

Note that larger elements move more slowly than smaller ones, hence there is a size effect ([1], [8], [11], [15], 
[20]). However, if we normalize the horizontal axis by the square root of the size, we obtain size independent 

results. In the following plots the vertical axis is normalized by ap,min (Eq. 2) while the horizontal axis by %2!/ , 
where g is the acceleration of gravity and 2b is the width of the block. 

 

Fig. 5 – The unnormalized and the normalized overturning acceleration spectra of blocks with different 
slenderness and size 

The effect of energy dissipation is shown in Fig. 6. The difference between Housner’s model and the case, 
when there is no energy loss during impact can be 16%. In reality, since the reported energy loss of the rocking 
block is roughly the half of that of Housner’s model, the difference can be around 8-10%. 
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Fig. 6 – The envelope of the overturning acceleration spectras based on Housner’s model and the model when no 
energy dissipation is considered 

The effect of impulse shape is shown in Fig. 7a and Fig. 7b. We presented the results both as a function of 
the length of the pulse and as a function of the impulse defined as 

 ' � � ���
� ��.  (3) 

In the first case the rectangular shape results smaller safe areas, then the other two, and the curve due to the 
sinusoidal pulse is between the other two. If we plot the results as a function of the impulse I, the three curves 
intersect. It can be seen that there is a minimum value of impact, which – at a given value of acceleration – is 
capable to turn over the block. 

 

Fig. 7  – The effect of the impulse shape 

The skewness of the shape is investigated in Fig. 8 and Fig. 9. The “fullness” and “skewness” are defined 
as 

 � � (
)*�*
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(��
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� .  (4) 

In Fig. 8 skewed sinusoidal shapes are investigated, where the fullness are identical (F=0.637), while the 
skewnesses are S=0.4, 0.45, 0.5, 0.55, 0.6. In Fig. 9 a triangular pulse shape is investigated (F=0.5), the skewnesses 
are S=0.33, 0.4, 0.5, 0.6, 0.66. 

It is an important observation that the asymmetry of the pulse has an important effect even if the fullness, 
ap, tp, and I are identical. 
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Fig. 8  – The effect of the symmetry and asymmetry of the skewness (modified sinusoidal shape) 

 
Fig. 9 – The effect of the symmetry and asymmetry of the skewness (triangular shape)  

In Fig. 10 the effect of the shape of the impact (before or after the main impact) is investigated. In every 
case the secondary impulse has the same impulse as the main impulse, but the secondary acceleration may be 
smaller, however with a longer duration. The results in Fig. 10 shows that these effects are important and an 
envelope can be recommended for practical applications. 
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Fig. 10  – The effect of the secondary impulse 

6.  Discussion 

In this paper the overturning acceleration spectra curves of single blocks were determined. The effects of the 
shapes of the impulse and the effect of Housner’s impact model were investigated. It was found that taking the 
classical Housner model into account the results can be around 8-10% on the unsafe side. We also showed that the 
skewness of the pulse and the shape of the secondary pulse significantly affect the results. Since real earthquakes 
the pulse is generally not symmetrical, and the main pulses are followed by secondary pulses, these effects must 
be taken into account. 
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