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Abstract 
An efficient method is proposed for transient response analysis of three-dimensional structures resting on viscoelastic 
half-space for incident plane waves. The formulation consists of two parts: (a) the time domain formulation of the 
unbounded soil which is modeled by lumped-mass explicit finite element and transmitting boundary condition and (b) 
the coupling algorithm between the soil and structure through foundation. It is an implicit-explicit method, in which 
the soil is analyzed by explicit procedure avoiding equation solving, and the structure is analyzed by implicit 
procedure. The time step of explicit and implicit procedure can be different. Examples are given to demonstrate the 
feasibility of this method, and the influence of incident angle on the structure response is investigated. The results 
obtained indicate the possible importance of the effects introduced by nonvertically incident SH wave. 
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1. Introduction 
On a deformable soil, structural response is governed by the interplay between the characteristics of the soil, 
the structure and the input motion[1]. Therefore, soil-structure interaction problems require combined soil 
and structure models. While structure models are very well established in the literature, soil models involve 
complicated analysis due to their unbounded nature. The standard way of analyzing problems of this type is 
to truncate the unbounded medium in order to render the computational domain finite and apply absorbing 
boundary conditions at the computational boundary. 

When the artificial boundary is imposed, the finite computational region can be analyzed by domain 
discretization technique. Finite element method is a popular domain discretization technique as it can 
accommodate easily for heterogeneity in the soil or structure medium and for nonlinearity in the materials, 
as well as in the geometry. Finite element transient algorithms could be classified into two distinct 
categories: implicit algorithms, in which a matrix system is solved, one or more times per step, to advance 
the solution; and explicit algorithms, in which the solution may be advanced without storing a matrix, or 
solving a system of equations. Implicit algorithms generally have the advantage with respect to numerical 
stability. In fact, in many cases, “unconditioned stability” may be attained (i.e. no time step restriction 
engendered by stability considerations). Explicit algorithms, on the other hand, generally require that small 
time steps be taken to insure numerical stability. Often the step-size restriction is more stringent than 
accuracy considerations require. However, the computational cost per step is generally much less for 
explicit algorithms than for implicit algorithms due to the avoidance of equation solving[2] .It is by now 
concluded that neither approach is optimal for all cases. Although the local boundary conditions can reduce 
the computational cost, the total computational cost for the analysis of large-scale soil-structure system is 
still very large using either implicit or explicit algorithms only, which prevents the present methods to 
analyze the practical 3D large-scale soil-structure interaction. Thus, we require that the dynamic interaction 
analysis be performed not only accurately but also efficiently. In dynamic soil-structure interaction analysis, 
it is effective to treat the soil and the structure by explicit and implicit algorithms respectively, which is due 
to the following two considerations: (1) Structure is relatively stiff, and therefore impose stringent time step 
restrictions if dealt with explicitly. So, it is sensible to analyze the structure by implicit procedures. (2) 
Degree-of -freedom of the soil is large in direct method for soil-structure interaction analysis, and the soil is 
always not very stiff, therefore it is efficient to analyze the soil using explicit algorithm. 

Most of the presently available methods to evaluate the soil-structure interaction effects are based on 
the assumption that the seismic excitation can be represented by plane vertically incident compressional or 
shear waves. The experimental evidence as well as theoretical analyses indicate that nonvertically incident 
seismic waves may have important effects on the response of structures. Trifunac [3] and Wong[4]have 
studied the two-dimensional response of a shear wall excited by nonvertically incident antiplane SH waves 
and found that the angle of incident has a marked effect on the structural response if the vertical cross 
section of the embedded foundation is not semi-circular. For three-dimensional structures, Iguchi [5]studied 
the response of one-story structure to nonvertically incident SH excitation including the effects of soil-
structure interaction. The response of nuclear power plant structures to obliquely incident SH waves 
including the effects of soil-structure interaction has been studied by Lee and Welsey[6] by using an 
approximate expression for the torsional input. Kobori and Shinozaki[7] have analyzed the torsional 
response of a one-story structure to obliquely incident SH waves. Luco [8]studied the torsional response of 
continuous elastic and symmetrical structures supported on a flat circular foundation and an embedded 
hemispherical foundation[9] when excited by obliquely incident SH waves. Luco[10] has studied the 
earthquake response of three-dimensional structures to nonvertically incident waves including the effects of 
soil-structure interaction. 

Studies of the response of three-dimensional real structures subjected to obliquely incident waves 
have been limited by the low efficiency of the method. In this paper attempts are made to develop an 
efficient direct method for analyzing three-dimensional soil-structure interaction subjected to obliquely 
incident waves. The soil is analyzed by explicit algorithm, and the structure is analyzed by implicit 
algorithm. The unbounded nature of the soil is simulated by the transmitting boundary condition proposed 
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by Liao and his co-works[11,12]. This boundary condition is local and easy to implement. To account for 
general, three-dimensional soil-structure interaction, the developed soil algorithm is coupled with the Finite 
Element Code ANSYS. The displacements and stresses at any point in soil-foundation-structure system can 
be calculated simultaneously. In section 2 the equations for calculating the responses of the overall soil-
structure system are given, and the procedure for analysis of soil- structure interaction is presented in detail. 
In section 3 we present three examples to validate the feasibility and effectiveness of the proposed method. 
Conclusions and suggestions for further research are presented in section 4. 

2. System model and equations of motion 
The soil-structure system consists of soil subsystem, rigid foundation and structure subsystem in this study. 
The soil subsystem and the structure subsystem are connected by the rigid foundation. The transmitting 
boundary conditions is used along the five boundary sections for three-dimensional case (four side sections 
and one bottom section) in order to model the far field conditions and allow for outgoing wave propagation. 

2.1 Soil subsystem 
The soil is modeled using eight-node hexahedral elements. Each node has three translational degrees of 
freedom along x,y and z coordinates. Having discretized the region bounded by the artificial boundary using 
FEM, the discrete nodes of soil subsystem are divided into three groups: the boundary nodes which are on 
the artificial boundary, the nodes which are connected with the rigid foundation, and the interior nodes 
which include all the others. The motions of the interior nodes and the boundary nodes are addressed in this 
section, and those of the nodes connecting with the foundation will be discussed in the later section.  

2.1.1 Motions of the interior nodes  

The governing equations of the interior nodes may be set up using the standard finite element technique. 
What should be noted is that the lumped-mass formulation is suggested for the spatial discretization in this 
study. This is because the lumped-mass formulation combined with explicit time integration scheme is 
efficient for large-scale computations. The governing equations of the interior nodes are written in the 
following form: 

N N

I I IL L IL L I
L L

+ + =∑ ∑M u C u K u F                                                   (1) 

where, IM is a 3 3× diagonal mass matrix of node I for the lumped-mass formulation, N is the number of 
nodes surrounding node I  (including node I )， Iu , Iu , Iu  are 3 1×  vectors of acceleration, velocity and 
displacement of the node I . ILC  and ILK are 3 3×  matrices of damping and stiffness between node  I  and 
node L . The material damping ILC  is assumed to be a linear combination of the mass and the stiffness 
matrix.  IF  is 3 1×  vector of external force exerted on node I . The diagonal mass matrix of node I  can 
be expressed as 

0 0
0 0
0 0

I

I I

I

M
M

M

 
 =  
  

M                                                                (2) 

Where, IM  is the lumped mass of node I . 

The acceleration and velocity at time p t∆  can be expressed in terms of the displacements at 
time ( 1)p t− ∆ , p t∆  and ( 1)p t+ ∆  by the following difference method 
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where , pu , pu  and pu  are the vectors of acceleration, velocity and displacement at time p t∆  respectively, 
t∆  is time step. 

Using the above difference approximation, the equations of interior nodes at time ( 1)p t+ ∆  can be 
written as 

2
1 1 112 ( )

N N
p p p p p p p
I I I IL L L IL L I

L LI

t
M t

+ − −∆  = − − − + − ∆ 
∑ ∑u u u C u u K u F                         (5) 

where， p
Iu 、 p

Iu  and p
Iu  are the vectors of acceleration, velocity and displacement of node I  at 

time p t∆  respectively. p
IF  is the vector of external force exerted on node I  at time p t∆ . The character of 

Eq. (5) is local in space and time, which is the local feature of wave motion. In other words, the motions of 
a specific spatial point at the next moment are determined completely by the motions of its neighboring 
points at the present and past times within a short time window. In addition, the assembly of mass and 
stiffness matrices is not really needed. So, the computational and storage requirements can be reduced 
greatly. 

2.1.2 Motions of the boundary nodes (artificial boundary conditions) 

We assume that the soil in boundary regions is linear. Thus, the governing equations of the boundary nodes 
can be written as Multi-Transmitting Formula (MTF) (Liao, 1996) 

1

1
(( 1) ,0) ( 1) (( 1 ) , )

N
s j N s

j a
j

u p t C u p j t jc t+

=

+ ∆ = − + − ∆ − ∆∑                              (6) 

where ( , )su t x is displacement of outgoing wave (or scatter wave), which is a function of time t p t= ∆ and 

ax jc t= − ∆ , t∆ is the time step, p is an integer. The coordinates ax jc t= − ∆  indicate the sampling points 
on the x-axis, which is perpendicular to the artificial boundary at a boundary point 0 under consideration. 

N
jC are the binomial coefficients, ac is the artificial speed, N is the approximation order of MTF. 

For the source problem in which the external loads are exerted on the structure or soil interior nodes, 
the total displacements are equal to displacements of outgoing waves and can be calculated through Eq.(6) 
directly. For the scattering problem in which the input wave impinges on the artificial boundary, the wave 
field decomposition is needed to obtain the total displacements through Eq. (6). In this study, the total 
displacement is decomposed into the free field displacement and the scattering displacement in the side 
boundary region, that means 

s f= +u u u                                                                  (7) 

Where, is the free field displacement and can be calculated by Thomson-Haskell propagator matrix 
method [13, 14]. is the scattering displacement. The scattering displacement  of the boundary node at 
time level p+1 can be calculated through MTF Eq. (6). Thus, the total displacements of the boundary nodes 
at the time level p+1 can be obtained by Eq. (7). 

2.2 Structure subsystem 
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The governing equations of motion of a multi-degree of freedom system as derived in a semi-discrete FEM 
approach is expressed in matrix form as 

+ + =Mu Cu Ku F                                                          (8) 

where, M , C ,and K  being the mass, damping and stiffness matrices of the structure, respectively. Vector 
u represents the displacement field at nodal points of the system, F represents the external excitation vector 
and dots indicate derivatives with respect to time. The Rayleigh-type damping is adopted and may be 
written as follows: 

a b= +C M K                                                                 (9) 

a and b are the coefficients related to the properties of the structure and can be determined by the following 
equations. 

2 i j

i j

a
ξωω
ω ω

=
+

                                                                (10) 

2

i j

b ξ
ω ω

=
+

                                                                 (11) 

where ξ  is a specified damping ratio; iω  is the first natural frequency; jω  is the highest frequency that 
contributes significantly to the response. 

Applying Newmark’s integration scheme, the governing equation of motion can be cast in a form of 
algebraic equation system: 

1 1
1 4 1 2 3 4 5 6( ) ( ) ( )p p p p p p p pb b b b b b b b+ ++ + = + − − + − −M C K u F M u u u C u u u                 (12) 

where， 
2

1 1 ( )b tβ= ∆     2 1 ( )b tβ= ∆    3 1 1 (2 )b β= −                                    (13) 

4 1b tbγ= ∆      5 21b tbγ= + ∆      6 3(1 )b t bγ γ= ∆ + −                                (14) 

β  and γ  are constants associated with Newmark’s method.  

2.3 Foundation subsystem 
The foundation connects the soil and structure, and transfer the interaction force between soil and structure. 
It is assumed that the foundation is rigid and the soil and foundation is perfectly bonded. The motion of the 
rigid foundation is described by six degrees of freedom: three translations ( xu , yu , zu ) and three rotations 

( xθ , yθ , zθ ). 

2.3.1 Forces exerted on foundation from soil 

Assuming node k is a soil element node on soil-foundation interface, the force exerted on the foundation by 
the soil at node k  can be expressed as 

{ }, , , , ,
T

k kx ky kz kx ky kzF F F M M M=F                                        (15) 

where， kxF ， kyF  and kzF  are the forces at node k  along x,y and z direction respectively. kxM ， kyM  

and kzM  are the torques about x,y and z axis respectively, and here, 0kx ky kzM M M= = = . kF  is equal to 
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the force exerted on node k  by the soil nodes surrounding it. Thus, according to finite element procedure, 
the force kF  at time p t∆ can be expressed as 

11 ( )

p
kx N N

p p p p p
k ky kL L L kL L

L Lp
kz

F
F

t
F

−

 
 = = − +  ∆ 
 

∑ ∑F C u u K u                                  (16) 

where, p
kxF , p

kyF  and p
kzF  are the force at node k  exerted by soil at time p t∆ ; N is the number of nodes 

surrounding node k  (including node k ). 

The total force exerted on foundation by soil at time p t∆  can be written as 

1

m
p T p

D k k
k=

=∑F A F                                                         (17) 

{ }, , , , ,p p p p p p p
D Dx Dy Dz Dx Dy DzF F F M M M=F                                        (18) 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

k k

k k

k k
k

z y
z x

y x

∆ −∆ 
 −∆ ∆ 
 ∆ −∆

=  
 
 
 
 

A                                        (19) 

where， m  is the number of soil nodes connecting with the foundation. p
DxF ， p

DyF  and p
DzF  are forces 

acted on foundation through soil at time p t∆  along x,y and z direction respectively. p
DxM ， p

DyM  and 
p
DzM  are torques exerted on foundation by soil at time p t∆  about x,y and z axis respectively. kA  is a 

transformation matrix, and kx∆ ， ky∆  and kz∆  are the coordinates of node k  with respect to center of 
mass of the foundation.  

2.3.2 Forces exerted on foundation from structure 
Assuming that node i  is a structure point connecting with foundation, similarly, we can obtain the force 
extered on foundation by structure at node i  at time p t∆  

{ }, , , , ,
Tp p p p p p p

i ix iy iz ix iy izF F F M M M=F                                            (20) 

where， p
ixF ， p

iyF  and p
izF  are the forces on node i  along x,y and z direction respectively. p

ixM ， p
iyM  and 

p
izM  are the torques about x,y and z axis respectively. Thus, the total force acting on the foundation through 

structure can be written as 

1

n
p T p

S i i
i=

=∑F A F                                                                (21) 

{ }, , , , ,p p p p p p p
S Sx Sy Sz Sx Sy SzF F F M M M=F                                            (22) 
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∆ −∆ 
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 
 
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 

A                                              (23) 

where，n  is number of structure element nodes connecting with foundation, iA  is a transformation matrix, 
and ix∆ ， iy∆  and iz∆  are the coordinates of node i  with respect to center of mass of the foundation. 

2.3.3 Motions of the foundation 
The total force exerted on foundation can be obtained from Eq. (17) and Eq. (21), that is 

1 1

m n
p p p T p T p

D S k k i i
k i= =

= + = +∑ ∑F F F A F A F                                             (24) 

The equilibrium equation of the foundation can be written as 

p p
F F =M u F                                                                  (25) 

{ }, , , , ,
Tp p p p p p p

F Fx Fy Fz Fx Fy Fzu u u θ θ θ=u                                                     (26) 
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0 0 0 0 0
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0 0 0 0 0

Fx
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Fz
F

Fx

Fy

Fz

M
M

M
I

I
I

 
 
 
 

=  
 
 
 
  

M                                        (27) 

where， p
Fu  is the acceleration vector of the foundation at time p t∆ . FM  is the inertial matrix of the 

foundation, FxM ( FyM , FzM ) is the mass of the foundation, FxI ， FyI  and FzI  are moments of inertial of 
foundation about x, y and z axis respectively. 

Applying the central difference time integration (Eq. (3)) to Eq. (25), the motions of foundation at time 
( 1)p t+ ∆  can be written as 

1 1 2 12p p p p
F F F Ft+ − −= − + ∆u u u M F                                                    (28) 

On the assumption that the connection between structure (soil) and foundation is bonded perfectly, the 
motions of node connecting structure (soil) with foundation can be decided by foundation motion, that is 

1 1p p
i i F
+ +=u A u                                                                (29) 

For soil node, Eq. (29) can be written in details as 
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For structure node, Eq. (29) can be written in details as 
1 1

1 1

1 1
1

1 1

1 1

1 1

1 0 0 0
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0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
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  ∆ −∆   
    −∆ ∆    
    ∆ −∆   = =    
    
    
    

       

u                                 (31) 

3. Numerical examples 
A comprehensive FORTRAN program has been developed to implement the proposed three-dimensional 
analysis of soil-foundation-structure interaction under earthquake. The program consists of more than 30 
fundamental subroutines which can be grouped as several major functional modules such as data acquisition, 
structure subsystem module, soil subsystem module, foundation subsystem module, transmitting boundary 
module, free field module, etc. These modules can be modified or changed as desired. Therefore, it is possible to 
update the program with progression of the research.  

The example is a multi-functional hall, which is a four-point-supported square pyramid space grid 
structure (shown in Fig.1). The number of lattices is 14 14× (each a 3m  square) and the height of roof is 
3.2m .The column network dimension is 39 39m m×  and the height of the steel tube columns ( 600 20φ × ) 
is9m . The chords and the web members are steel tubes of 168 6φ × and 152 5φ × respectively. Four independent 
reinforced concrete foundations under columns are considered on half-space. The dimension of each independent 
foundation is 3 3 0.5m m m× × . Eight-node hexahedral elements are employed to model the soil media. The 
dimension of the calculated soil is 60 60 24m m m× × . The dimension of the soil element is 1.5 1.5 2m m m× ×  
and the total number of soil elements is 19200. The parameters of soil layer are shown in Table 1. The time steps 
for soil and structure are 0.0002s  and 0.002s  respectively. The default Newmark parameters 1 4β =  and 

1 2γ =  are used. The transmitting boundaries are imposed on five soil boundary surfaces (four side boundaries 
and one bottom boundary). Live loads and dead loads are considered according to Chinese load code for the 
design of the building structures. The input seismic displacement is shown in Fig.2.  

Table 1 – Material properties of soil layers 

Number of 
soil layer 

Shear wave 
speed(m/s) 

Mass density 
(103kg/m3) 

Poisso
n ratio 

Damping 
ratio  

Thicknes
s (m) 

1 165 1.83 0.40 0.07 2 
2 184 1.92 0.45 0.07 4 
3 232 2.06 0.45 0.07 6 
4 324 2.24 0.47 0.07 12 
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Fig. 1 – Description of the model                                 Fig. 2 – Input displacement in x direction           
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Fig. 3 – Response of the point 1 on structure for different incident angle 

0 0.5 1 1.5-1

-0.5

0

0.5

1

1.5x 10-3

t(s)

U
x(m

)

 

 

0°
30°
60°
89°

0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5x 10-3

t(s)

U
y(m

)

 

 

0°
30°
60°
89°

0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5x 10-4

t(s)

U
z(m

)

 

 

0°
30°
60°
89°

 

0 0.5 1 1.5-4

-3

-2

-1

0

1

2

3

4x 10-4

t(s)

θ x(r
ad

)

 

 

0°
30°
60°
89°

0 0.5 1 1.5-3

-2

-1

0

1

2

3

4

5x 10-4

t(s)

θ y(r
ad

)

 

 

0°
30°
60°
89°

0 0.5 1 1.5-8

-6

-4

-2

0

2

4

6

8x 10-5

t(s)

θ z(r
ad

)

 

 

0°
30°
60°
89°

 
Fig. 4 – Response of the point 2 on structure for different incident angle 
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Fig. 5 – Response of the point 3 on structure for different incident angle 
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Fig. 6 – Response of the point 4 on structure for different incident angle 
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Fig. 7 – Response of the foundation 1 for different incident angle 
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Fig. 8 – Response of the foundation 2 for different incident angle 

   The response of the selected points on grid structure (shown in Fig.1) and foundations are given in Fig.3 
through Fig.8. As expected, the response along x axis, the rocking around y-axis and rotation for obliquely 
incident SH wave are significantly higher than the corresponding response for vertically incident case (Fig.3 and 
Fig.4). The response of the foundation 1 and foundation 2 have different phase for nonvertically incident SH 
wave, but the same phase for vertically incident case (Fig.7 and Fig.8). The results obtained indicate the possible 
importance of the effects introduced by nonvertically incident SH wave. 

4. Conclusions 
In this paper we have described a method for analyzing three-dimensional dynamic soil-structure interaction 
for incident plane wave. The proposed method may be used as an auxiliary approach for the seismic 
capacity evaluation of interactive soil-foundation-structure systems. The algorithm developed is found to be 
quite efficient and economical. The characteristics of this method are: 

（1） The seismic responses of the structure, foundation and soil can be analyzed at the same level of detail, so 
that the results of the analysis will be meaningful for both structure and foundation designs.  

（2） It is an implicit-explicit method, in which the soil is analyzed by explicit procedure avoiding equation 
solving, and the structure is analyzed by implicit procedure. The time step of explicit and implicit can be 
different. This technique can result in substantial cost reduction. 

（3） The influence of the unbounded soil is considered by imposing local transmitting boundary. 

The results obtained in this paper indicate the response of structure and foundation are greatly different 
between vertically incident SH wave and nonvertically incident case. 
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