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Abstract 
It is currently admitted that the amplification factor (AF) is one of the best tools to describe site effects. AF depends on soil 
parameters that are derived from the geometrical and mechanical soil properties of the soil profile. Thus, it is important to 
identify which soil parameters shape the form of the AF. The aim of this paper is to measure the effects of various site 
parameters on the variation of AF. As the problem is highly complex, a tool using the GRNN (Generalized Regression 
Neural Network) to understand which soil parameters have been developed. 

For a particular soil profile it has been found that values of AF derived from GRNN approach are closer to that of 1D linear 
viscoelastic seismic analysis particularly if the number of parameters increases. Based on this result a sensitivity analysis 
has been conducted to identify which parameters give good AF. For the practical case where we have to introduce only two 
parameters, it has been observed that the couple [resonance frequency (f0) , time-averaged shear-wave velocity in the top 30 
m (Vs30)] is the most interesting. 
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1. Introduction 
The site effects have great impact on the seismic motion and thus could cause dramatic effects on 
structures. For instance, during the Great Michoacan Earthquake of Mexico amplification induced by 
site effects has been recognized as the major cause of structural collapse [1]. After this earthquake, the 
classification of used sites in earthquake regulations (UBC97, EC8,…) has been increasingly based on 
the time-averaged shear-wave velocity in the top 30 m (Vs30). After Borcherdt [2] or many authors and 
engineers [3, 4], it was clear that this single parameter does not take the physics of 1D site 
amplification. Here important questions arise: how to define amplification factor (AF) and which 
parameters shape the form of this factor? Both questions have been widely addressed.  
This latter is regarded as a parameter which describes site category. Other parameters such total depth, 
average shear wave velocity, fundamental frequency of soil, the contrast of velocity between the 
surface and the bedrock, profile could be used to describe site category. This has been proposed by 
some authors [5].  It is thus possible to combine all or some of these parameters in a unique model that 
is derived from a statistical treatment. However an interesting alternative to this treatment, which could 
be very hard to conduct especially if we want to know which parameter is the most important, is the 
Artificial Neural Network which has been recently used in earthquake engineering [6]. 

The topic of this article is to understand the effects of various site parameters on the variation of 
amplification factors using the GRNN (Generalized Regression Neural Network). To reach this goal a 
database is established in term of Amplification factor using a 1D linear viscoelastic site response 
analysis. It is assumed herein that the soil is multi-layered resting on a substratum. To establish this 
database, a set of 14 seismic acceleration has been selected and 858 profile soils have been settled. 

2. Theoretical derivation of the amplification factor 
2.1 General background 
For a particular soil profile, the amplification factor is given as follows: 
 

𝐴𝐹(𝑇) = 𝑆(𝑇)𝑠
𝑆(𝑇)𝑏

         (1) 
 
Where 𝑆(𝑇)𝑠 and 𝑆(𝑇)𝑏 are respectively the 5% response spectra at soil surface and reference site and  
T is the structural period. 𝑆(𝑇)𝑏 is computed for a particular seismic motion whereas 𝑆(𝑇)𝑠 is 
calculated using the 1D viscoelastic analysis [7] considering the following steps: 

1. Choose a soil profile and a motion at substratum 𝑏(𝑡) 
2. Compute the Fourier transform of the motion at substratum noted 𝐵(𝑓) 
3. Derive the transfer function, 𝑇(𝑓) of the motion which is the ratio of motion at soil surface 

to the motion at substratum in the frequency domain using 1D (linear) viscoelastic analysis. 
4. Compute the motion at soil surface𝐿(𝑓) by multiplying 𝐵(𝑓) and 𝑇(𝑓) 
5. Perform an inverse Fourier transform on 𝐿(𝑓) to obtain the motion in time domain 𝑙(𝑡).  
6. Derive the response spectra 𝑆(𝑇)𝑠 

Once 𝑆(𝑇)𝑠 and 𝑆(𝑇)𝑏 derived the AF could be readily obtained from Eq. (1). 
 
2.2 Dataset 
As the frequency content of the motion at the reference site will surely shape the form of the motion at 
the soil surface we have selected a set of motion with a large variety of frequency variety. A set of 14 
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seismic acceleration (S1 to S14), collected at outcropping rock, has been chosen. Both PGA and 
frequency content of the highest Pseudo acceleration are depicted in Table 1. 

Table 1 – PGA for the 14 acceleration time histories 

Identification PGA (m/s²) Frequency content of the highest PSA 

S1 1.269 f<2Hz 
S2 1.288 f<2Hz 
S3 3.190 f<2Hz 
S4 2.074 2Hz<f<4Hz 
S5 3.106 2Hz<f<4Hz 
S6 3.140 2Hz<f<4Hz 
S7 1.0030 4Hz<f<8Hz 
S8 1.4740 4Hz<f<8Hz 
S9 3.0060 4Hz<f<8Hz 
S10 1.4960 4Hz<f<8Hz 
S11 1.023 8Hz<f<16Hz 
S12 4.260 8Hz<f<16Hz 
S13 1.393 8Hz<f<16Hz 
S14 0.803 8Hz<f<16Hz 

 

 
Fig. 1 – 5% Geometrical mean of the normalized damped response spectral acceleration 𝑆(𝑇)𝑏 
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It is worth noting that values of the PGA covered a wide range of excitation ranging between 0,08g and 
0,42g. Also, the 14 excitation are characterized by a various frequencies. Indeed the 5% Normalized 
damped response spectral acceleration for a set of seismic acceleration (S1 to S14) collected at 
substratum shows that the frequency content varies from 0,1Hz to 100 Hz. Fig. 1 shows the variation of 
the geometrical mean of the normalized damped response spectral acceleration. 
 
2.3 Soil classification and derivation of site parameters 

A total of 858 profiles has been selected. The site parameters that define site category have been 
selected as: depth(D), average shear velocity (vsm), average shear wave velocity at the upper 30m (vs30), 
shear wave velocity in the substratum (vn+1), contrast of velocity Cv) and fundamental frequency of soil 
profile. They are defined as follow:  

D=∑
=

n

m
mh

1

        (2) 

       (3) 

Where mmm Gv ρ=  is the shear wave velocity in layer (m) 

         (4) 

          (5) 

(where N30 is the number of layers in the topmost 30 meters) 
The fundamental frequency (f0) of soil profile is determined through the simplified version of the 
Rayleigh procedure [8]. Thus for each profile, a set of six parameters have been calculated. The 
logarithm distributions of these parameters follow a normal distribution (Fig. 2).  
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Fig. 2 – Distribution of the site parameters 

 
 
The 858 profiles have various values of the velocity at substratum. In order to compare results obtained 
for these profiles the velocity at substratum is normalized such that all profiles rest on a substratum 
with an equal shear wave velocity equal to 800 m/s. Such a velocity scaling is performed to keep 
unchanged the site fundamental frequency,  so that the new site parameters for these normalized 
profiles are now: 

• Normalized depth of the profile 

𝐷′ = � 800
𝑣𝑛+1

� ∗ 𝐷       (6) 

• Normalized average shear wave velocity 

𝑣𝑠𝑚′ = � 800
𝑣𝑛+1

� ∗ 𝑣𝑠𝑚      (7) 

• Normalized average shear wave velocity at the upper 30m 

     (8) 

The contrast of velocity and fundamental frequency of soil profile doesn’t change while performing 
normalization, while the total thickness D', the average velocity V'sm and the avrerage V'S30 are 
changing because of the thickness or velocity changes. 
 
2.4 Description of the database elaborated in terms of Amplification factor (AF) 

The AF (Eq. (1)) has been calculated for the 2x858 profiles (normalized and not normalized soil) 
subjected to 14 seismic excitations. Thus the database is constituted of 2x858x14=24024 AF. The AF 
depends on: soil profile (either normalized or not normalized) and excitation at substratum. Thus it is 
written 𝐴𝐹(𝑃𝑘,𝜃, 𝑆𝑙,𝑇𝑖) where 

𝑃𝑘,      𝑘 = 1, … 858 is introduced to identify the soil profile, 

𝜃 = 1 for not normalized soil profile, 𝜃 = 0 for normalized soil profile 

𝑆𝑙,    𝑙 = 1, 14 is the lth excitation. Note that if l=m its means that the geometrical mean of the fourteen 
excitation is used. 

𝑇𝑖, (𝑖 = 1, . .271) is the ith structural period. The 271 values are log equally spaced between 0,01s and 
10s. 
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Once the AF calculated for a particular profile, let say k, and for the 14 seismic excitation, the 
geometrical mean of AF are then deduced as follow  

𝑙𝑜𝑔[𝐴𝐹(𝑃𝑘,𝜃,𝑇𝑖)] = ( 1
14

)∑ 𝑙𝑜𝑔[𝐴𝐹(𝑃𝑘,𝜃, 𝑆𝑙,𝑇𝑖)]14
𝑙=1       (9) 

Hereafter 𝐴𝐹(𝑃𝑘,𝜃,𝑇𝑖) stands for AF. Some new parameters are introduced to measure the variability 
of the results. 

• Means of AF 
𝑙𝑜𝑔�𝐴1(𝜃,𝑇𝑖)� = 1

𝑛𝑝
∑ 𝑙𝑜𝑔[𝐴𝐹(𝑃𝑘,𝜃,𝑇𝑖)]𝑛𝑝
𝑘=1       (10a) 

Where 𝑛𝑝 is the total number of profile. 

• Variability error 

𝑉𝑒1(𝜃,𝑇𝑖) = �
1
𝑛𝑝
∑ [log (𝐴𝐹(𝑃𝑘,𝜃,𝑇𝑖)) − log (𝐴1(𝜃,𝑇𝑖))]2𝑛𝑝
𝑘=1     (10b) 

• Max of the variability error 
𝑀𝑉𝑒1(𝜃) = 𝑚𝑎𝑥[𝑉𝑒1(𝜃,𝑇𝑖)]       (10c) 

• Total variability error 
𝑇𝑉𝑒1(𝜃) = 1

𝑛𝑇
∑ 𝑉𝑒1(𝜃,𝑇𝑖)
𝑛𝑇
𝑖=1        (10d) 

Where 𝑛𝑇 is the number of structural period or frequency used. 
2.5 Means and variability of the AF  

For profiles which are not normalized we compute the 12012 AF and derived the mean of amplification 
factor and (mean± variability of error) (Fig. 3). The various variability at different value of the period 
are presented in Table 2. 

Table 2 – Derivation of the variability parameters 

Variability total of error (in log10) 0.1178 
Max variability of error (in log10) 0.1717 
Variability of error (in log10)at (t=0.01s) 0.1227 
Variability of error (in log10)at (t=0.02s) 0.1226 
Variability of error (in log10)at (t=0.04s) 0.1206 
Variability of error (in log10)at (t=0.07s) 0.1314 
Variability of error (in log10)at (t=0.1s) 0.1494 
Variability of error (in log10)at (t=0.2s) 0.1623 
Variability of error (in log10)at (t=0.4s) 0.1446 
Variability of error (in log10)at (t=0.7s) 0.1200 
Variability of error (in log10)at (t=1s) 0.1040 
Variability of error (in log10)at (t=2s) 0.0626 
Variability of error (in log10)at (t=4s) 0.0477 
Variability of error (in log10)at (t=7s) 0.0388 
Variability of error (in log10)at (t=10s) 0.0412 
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Fig. 3 – The AF for each profile, mean of amplification factor (red line) and mean ± variability error(bright blue 

line) 

 
The database in term of AF has been constituted either for normalized or not normalized soil 

profile, which are widely used to describe site effects, have been assessed. The main issue now is to 
understand how site parameters shape the form of both AF . To reach this goal we have used a newly 
neural network approach called GRNN. Next section will be dedicated to a description of GRNN 
approach. 

3. Derivation of the AF using the neural network appraoch  
The GRNN is a pattern of the neuron networks at radial basis network (RBF) [9]. It is based on 
networks of kernel regression [10, 11] where the desired function is reached by a linear combination of 
the appropriate Gaussian functions. The GRNN is composed of four layers: the entry layer, the pattern 
layer, the summation layer and the exit layer. The foreseen value y’i, is defined as follow by [12]: 
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Xk : The entry vector of the k line.  
xik : The learning vector between the ith  neuron of the hidden layer and the entry vector 
of the K line. 
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σ: the Gaussian width. 
Q: is the number of vectors submitted to the learning. 
R: is the element number of the entry vector (the site parameters).  

 

 
Fig. 4 – The general structure of the GRNN method 

4. Results and discussion: 
4.1 General schemes  

The database is constituted of 858 profiles either normalized or not for which we calculated AF in 
terms of period and normalized frequency. Thus the sensitive analysis will be conducted for six 
schemes. In turn, the soil profiles are fully identified by its site parameters. It is worth noting that 75 % 
of the database has been used in the training phase whereas 25% has been used in the test phase. 

4.2 Comparisons between AF deduced from GRNN and analytical model 

This part shows that values of AF deduced through GRNN are close to that obtained in the database. 
The standard deviation tends to increase as number of parameters decreases (Table 3). It is worth 
noting that for a particular soil profile (see soil parameters Table 4) which is one of the 858 profiles, we 
found that GRNN gives value of AF close to the analytical model (Fig. 5).  

In order to measure the robustness of the approach we compute the AF for a soil profile that is not in 
the database (see soil parameters Table 5). Careful examination of the results (Fig. 6) shows that values 
AF factors from GRNN tend to be different from that of the database as the number of soil parameters 
decreases. 

Obviously the difference between these values depends on the soil profile. Thus it is important to 
derive the error in terms of standard deviation for both period obtained for normalized and not 
normalized soil profile. The results obtained are depicted in section 4.3. 

 

Table 3 – Standards deviation with variation of the number of site parameters. 

Number of parameters Description of the 
parameters 

Standard deviation R=1-(sigma 
model/sigma 
original data) 

All parameters Depth+ f0+ vsm + Cv 
+Vs30+ Vn+1 

0.0011 0.99066 
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Three parameters f0+ Cv + Vs30 0.0079 0.93293 
Two parameters f0+ Cv 0.0251 0.78692 
Two parameters f0+ Vs30 0.0782 0.33616 
One parameter Cv 0.0725 0.38455 
One parameter Vs30 0.1038 0.11884 

Table 4– Soil parameters of a soil profile that belong to the database. 

Depth (m) f0 (Hz) Vsm (m/s) Cv Vs30 (m/s) Vn+1 (m/s) 
49.00 4.15 552.47 10.45 455.93 2300 

 

Table 5 – Soil parameters of a soil profile that is not from to the database. 

Depth (m) f0 (Hz) Vsm (m/s) Cv Vs30 (m/s) Vn+1 (m/s) 
102.00  3.34   780.09 10.00 347.93 2500 

 

 
Fig. 5 – Comparison of AF obtained by various GRNN models with the actual AF obtained by 1D simulation, 

for a soil profile included in the model database 
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Fig. 6 – Comparison of AF obtained by various GRNN models with the actual AF obtained by 1D simulation, 

for a soil profile that is not from to the database 
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Fig. 7 – Standard deviation of AF deduced by GRNN and analytical model for original soil profiles (with 
varying bedrock velocities) 

 

 
Fig. 8 – Standard deviation of AF deduced by GRNN and analytical model for soil profile normalized at a 

bedrock velocity of 800m/s 

 

4.3. Derivation of standard deviation for various case 

 
We have derived the standard deviation for various cases (Figs 7-8). It is important to note that the 
difference between values of AF from GRNN and analytical model tend to decrease as the number of 
soil parameters increase. However for practical reason it is more interesting to introduce a small 
number of soil parameters. This study shows that if we try to use only two parameters the best 
combinations is f0, Cv. However, engineers experience difficulty to determine values of Cv and as far 
as the results of this study shows, it is preferably to use the combination of f0 and vs30. This 
combination leads to acceptable values of standard deviation.  

5. Conclusion 
Site effects have a great impact on the seismic motion and thus could cause dramatic effects on 
structures. These effects are generally described in seismic regulation codes by simple coefficients 
which are in turn based on amplification factors (AF). The latter are derived using soil parameters. This 
paper attempts to address the problem on how these soil parameters control the frequency dependent 
shape of AF. To reach this goal a database in term of AF is established by considering a 1D, linear 
viscoelastic seismic analysis. Using the GRNN (Generalized Regression Neural Network), it has been 
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found that values of AF derived from GRNN approach get closer to that of 1D viscoelastic seismic 
analysis when the number of site parameters considered in the GRNN model increases. Based on this 
result a sensitivity analysis has been performed to identify which parameters provide satisfactory 
estimates of AF. For the practical case where we have to use only two parameters, which should in 
addition be easily available in the field, it has been observed that the couple (f0, VS30) (i.e., fundamental 
frequency shear + average wave velocity over the upper 30m) is the most interesting compromise 
between affordability and accuracy. 

This prelimanry study has been performed here only in the linear viscoealstic domain, and should be 
extended to non-linear site response: in such a case, it will be necessary to consider somme additional 
input parameters, basically for the loading level (i.e., PGA or PGV), and for the soil type (i.e., cohesive 
or cohesionless, or plasticity index), which are essential for NL behavior. 
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