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Abstract 
The adequate performance of critical infrastructure such as transportation, telecommunications, healthcare, and electric 
power systems are essential to the resilience of communities after major earthquakes. However, assessing the seismic risk of 
networks is more complex than for individual structures since the performance of systems depend on several spatially 
distributed intensity measures and the interdependence amongst the system’s components. A convenient and 
probabilistically consistent way of performing the assessment is by the use of a stochastically-generated earthquake 
catalogue. This paper computes the seismic risk of electric power systems and its methodology can be summarized in three 
steps: (i) sample hazard-consistent seismic scenarios; (ii) compute the overall performance of the system for each scenario; 
and (iii) estimate the seismic risk from the performances of all earthquake scenarios. The resulting risk is represented by the 
commonly used expected annual service loss of the system, but also by the complete probability distribution of accumulated 
deficit of electric service. The methodology is applied to the electric network in north Chile, and is used to estimate the 
Energy Not Supplied (ENS) and the Energy Index of Unreliability (EIU) due to seismic events. Finally, an evaluation of the 
effect that different sampling methods have on the expected values and uncertainty of results is presented. 
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1. Introduction 
Modern societies have developed their daily life based on the reliability of complex systems such as electric 
power, natural gas and petroleum production and distribution, telecommunications, transportation, water supply, 
health system, banking and finance, emergency and government services. The operation of these systems, 
defined as critical infrastructures, are strongly intertwined. Due to these interdependences, the disruption of any 
system can lead to far-reaching security and reliability effects [1]. Electric power systems are particularly 
important because other key sectors depend on it [2]. For example, the U.S. Presidential Policy Directive 21 
identifies the Energy Sector as uniquely critical because it provides an enabling function across all critical 
infrastructures [3]. Chile and countries located around the Pacific Ring of Fire are especially exposed to the risk 
of earthquakes. Consequently, the effect of electricity blackouts produced by these seismic events requires 
comprehensive system risk assessment. 

Assessing the seismic risk of networks is more complex than for an individual structure, which is 
conventionally carried out by decoupling the problem into two steps: first, compute the seismic hazard curve at 
the site of the structure using Probabilistic Seismic Hazard Analysis (PSHA) [4], and then estimate the 
vulnerability of the structure, i.e. its response to different intensity levels. This approach cannot be used to assess 
the seismic risk of spatially distributed systems since it does not account for the joint probability of occurrence 
of different intensity levels at different sites and the interdependence among the system components. Because the 
computation of the joint probability distribution of intensities at multiple sites is impractical, it is more 
convenient to estimate the seismic risk using different earthquake scenarios, and thus not computing the seismic 
hazard explicitly. Typically, scenarios are also needed because the assessment of network performance does not 
have a closed form and requires the use of numerical simulations. 

To approach the named problem, different methodologies have been presented in the literature. 
Particularly, for the seismic hazard modelling, the required earthquake scenarios can be selected 
deterministically, e.g. by the use of historic events [5], multiple events obtained from seismic hazard 
disaggregation, or from seismic hazard maps [6]. However, deterministic methods rely on arbitrary decisions and 
are not probabilistically consistent. A more comprehensive solution is to construct a stochastically-generated 
earthquake catalogue by the use of Monte Carlo Simulations (MCS) [7-9]. A downside of using MCS is that the 
number of simulations needed to achieve an acceptable amount of confidence on the results might be 
computationally prohibitive, especially when the performance of the system does not have a closed form and 
must be computed with numerical simulations. Recent studies have reduced the number of required simulations 
by the use of variance reduction techniques, such as importance sampling [8] and k-means clustering [9]. 

As discussed in [10, 11], a comprehensive system risk analysis of electric power networks must include: 
hazard modelling, fragility evaluation of vulnerable components, operation of the system, and restoration of 
damaged components. Recently some works on seismic risk assessment of electric power networks with a 
comprehensive perspective [5] and with a partially comprehensive perspective, i.e. without the restoration phase 
[7], and with neither operation nor restoration phases [6, 12], have been developed. The operation of the electric 
system in these studies has been carried out by solving an Optimal Power Flow (OPF) problem, which 
minimizes generation costs while balancing the entire power flow at every time step, as explained by [13].  

Specifically, [5] analyses the power system of the city of Los Angeles (US) where micro-components 
within substations are stressed by historic seismic events to assess the resilience of the system. Reference [6] 
uses a single return-period hazard map, which is parameterized, to obtain the electric network fragility curve and 
assess the vulnerability of the interdependent European gas and electric network. Reference [7] studies the power 
system of Sicily; where stochastically-generated seismic scenarios and an object-oriented programming is used, 
including a power-flow formulation for the system operation to calculate the connectivity loss of the system. 
Finally, [12] uses a representation of 1962 Midwestern US bulk power system contained in a circular area of 150 
km diameter where earthquake epicenters are uniformly spatially generated and a retrofit prioritization decision-
making model is presented. 

The present study uses MCS and importance sampling to compute the seismic risk of electric power 
networks. The methodology, schematically shown in Fig.1, generates first a stochastic earthquake catalogue with 
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Ns events, which is compiled by using a recurrence model for each seismic source to sample earthquake 
magnitude and location. A ground motion prediction equation is then used to sample Peak Ground Accelerations 
(PGA) at the site of each network component and for each earthquake. Then, fragility curves are used to sample 
the component damage states (i.e. generation facilities and substations), and their associated downtimes are 
sampled from specific probability distributions that depend on their damage state. To economize processing 
time, only the Nd scenarios with damage are used to operate the system. With the unit commitment previously 
performed, the restoration of system components is carried out in every time step within the selected model time 
window. In a sequence of steps and together with restoration, the operation of the complete electric power 
network following each earthquake is modelled as a linear optimization problem (DC OPF). Finally, the Energy 
Not Supplied (ENS) and the Energy Index of Unreliability (EIU) are computed to characterize the seismic 
performance of the network. The seismic risk is estimated using the performances due to all earthquakes in the 
catalogue, and is expressed by the usual expected annual loss and mean annual frequency of exceedance, but 
also by the complete probability distribution of accumulated losses in specific time windows. The methodology 
is then applied to the electric power network in north Chile. 

 
Fig. 1 – Methodology diagram. 

 

The organization of the paper includes in Section 2 the seismic hazard modelling for spatially distributed 
infrastructure. In Section 3, the vulnerability and operation of electric power systems is explained and in Section 
4, the risk assessment procedure is explained. A comprehensive system risk analysis of the north Chile electric 
network is carried out in Section 5, where normal and importance-sampling techniques are compared. Finally, 
Section 6 summarizes the main conclusions of the paper. 
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2. Seismic hazard for spatially distributed infrastructure 
The first step of the methodology consists in sampling a stochastic catalogue of earthquake scenarios with their 
associated intensities at all locations. Earthquake magnitudes are sampled using a truncated Gutenberg-Richter 
recurrence model. The hypocenter location is assumed to be uniformly distributed in each seismic source. The 
seismic hazard model with the geometry of the seismic sources and Gutenberg-Richter parameters used in this 
study is presented elsewhere [14]. 

The intensities at all sites and for each earthquake are predicted using Eq. (1) 

ln(𝐼𝑀𝑖𝑗) = ln�𝐼𝑀����𝑖𝑗� + 𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑗𝜂𝑗 (1) 

where 𝐼𝑀𝑖𝑗 is the ground motion intensity at site i for earthquake j; 𝐼𝑀����𝑖𝑗 is the average intensity predicted by a 
Ground Motion Prediction Equation (GMPE), which depends on earthquake magnitude, source to site distance, 
and other earthquake variables (e.g. focal depth and local soil conditions); 𝜎𝑖𝑗 and 𝜏𝑗 are standard deviation terms 
representing intra-event and inter-event variability, respectively, which are also given by a GMPE; 𝜀𝑖𝑗 is the 
normalized intra-event residual; and 𝜂𝑗 is the normalized inter-event residual. Both residuals 𝜀𝑖𝑗 and 𝜂𝑗 are 
assumed as standard normal distributions. For each earthquake 𝜂𝑗 is sampled once and 𝜀𝑖𝑗 is sampled at each 
location. Inter-event residuals are also spatially correlated, which is modelled with a multivariate normal 
distribution with zero mean, unitary standard deviation, and a correlation structure that depends on the distances 
between sites [15]. 

The intensity measure (IM) used in this study is Peak Ground Acceleration (PGA), predicted using the 
GMPE proposed by Abrahamson et al [16]. This equation requires as input the average shear-wave velocity in 
the top 30 meters of soil (Vs30), which was obtained from seismic micro-zonation for network components 
inside of some cities [17]. However, the information on local soil conditions of components outside of these 
cities was unavailable, and hence, these velocity values were estimated using the global Vs30 map server 
provided by the U. S. Geological Survey [18]. The spatial correlation model proposed by Jayaram and Baker 
[15] is used in this study. 

The previously explained procedure leads to ground motion intensities by sampling earthquake 
magnitudes from a truncated Gutenberg-Richter distribution (𝑓𝑀). This implies sampling high magnitude 
earthquakes much less frequently than low magnitude earthquakes. However, high magnitude earthquake 
contribute more to the overall risk assessment. Therefore, a way to improve computational efficiency is to use 
importance sampling, where magnitudes are sampled using another distribution that increases the frequency of 
higher magnitude samples (𝑔𝑀). This distribution has arbitrarily been selected herein as a uniform distribution. 
The use of a different sampling distribution must be accounted for when computing the seismic risk. This is 
carried out by multiplying the final results obtained by the corresponding weights expressed in Eq. (2), 

𝑤𝑖 = 𝑓𝑀(𝑚𝑖)/𝑔𝑀(𝑚𝑖) (2) 

where 𝑚𝑖 is a magnitude sampled from the 𝑔𝑀 distribution. The use of these results and weights in the overall 
risk assessment is explained in Section 4. 
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3. Vulnerability and operation of electric power systems 
Electric power systems are divided in three main segments: generation, transmission and distribution. Because of 
their importance, the present study focuses on the first two segments, since their damage may produce a 
widespread blackout, whereas damage in the distribution segment may also produce local blackouts only. The 
system components that are identified as vulnerable to earthquakes and whose failure could possibly generate a 
high impact on the network’s performance are power plants and substations. 

Fragility curves express the probability of system components reaching different damage states, 
conditioned to PGA. Fragility curves assign different damage states ranging from no damage to collapse as 
shown in Table 1. These curves were retrieved from the technical manual of the Hazus software [19]. The 
Chilean electric normative [20] indicates that high voltage facilities must fulfill the ETC 1.015 standard or the 
IEEE 693-1997 standard at “High Performance Level”. Therefore, all facilities are considered as “anchored”. 

Table 1 – Network components modelled as vulnerable. 

Vulnerable components Classification Damage states 

Substations 
Anchored medium voltage 

(150 to 350 kV) 
None, Minor, Moderate, 

Major, and Collapse 

 Anchored low voltage 
(34.5 to 150 kV) 

None, Minor, Moderate, 
Major, and Collapse 

Power plants 

Anchored large power 
plant (> 200 MW) 

None, Minor, Moderate, 
Major, and Collapse 

Anchored small power 
plant (< 200 MW) 

None, Minor, Moderate, 
Major, and Collapse 

 

Each component classification and damage state has a different fragility curve. Damage states are 
modelled differently for each vulnerable component identified. Substations with minor, moderate, major damage 
and collapse disconnect 5%, 40%, 70% and 100% of adjacent components, respectively. Power plants with any 
damage are disconnected from the system until restored. 

After assigning damage states, the restoration time of each component is defined. This depends on three 
main aspects: (i) the damage state, (ii) the amount of human and material resources available and (iii) the 
accessibility of the affected area. For simplicity reasons, in this study only the first aspect is taken into account. 
Restoration times are sampled from a normal distribution according to the parameters used for power plants and 
substations in Hazus [19]. 

After assigning all component damage states and repair times, the system is operated with the working 
components within a specified time window, say a week, and time resolution, say hourly. The operation of 
electric power systems is a complex topic and is performed in different ways depending on the country’s, or 
state’s, regulation, always with the objective of minimizing total costs while ensuring a reliable and inexpensive 
operation. Generally, the operation is delegated to an Independent System Operator (ISO) or Transmission 
System Operator (TSO), who performs long, medium and short-term planning to operate the system. In this 
work two studies are performed to operate the system: (i) unit commitment, where the scheduling of power 
generation units status (on/off) is decided, and (ii) DC Optimal Power Flow (DC OPF), where the dispatching of 
the online units is decided.  

DC OPF can be modelled as a linear optimization problem where some modelling assumptions and 
limiting constraints are carried out. In this case, reactive powers and voltage magnitudes are omitted from the 
problem, and active power flows are modelled as linear functions of the node voltage angles (Θk - Θj). The 
decision variables of the problem are power generation of each generator unit i (pi) and the voltage angle of each 
node k (Θk). The problem is cast as follows: 
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min
𝑝𝑖,Θ𝑘

�𝐶𝑖

𝑛𝑔

𝑖=1

(𝑝𝑖) (3) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

(𝑘 ∈ 1 . . .  𝐾 𝑛𝑜𝑑𝑒𝑠, 𝑗 ∈ 1 . . .  𝐽 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠, 𝑖 ∈  1 … 𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠) 

𝑔𝑘(𝑝𝑖,Θ𝑘) = 𝑝𝑘𝑙𝑜𝑎𝑑 − ∑ 𝐴𝑘𝑖 ∗ 𝑝𝑖
𝑛𝑔
𝑖=1 + ∑ 𝐵𝑘𝑗 ∗ �Θ𝑘 − Θ𝑗�

𝐽
𝑗=1 = 0,    ∀𝑘 (4) 

ℎ𝑓𝑟𝑜𝑚(Θ𝑘) =  𝐵𝑘𝑗 ∗ (Θ𝑘 − Θ𝑗) − 𝐹𝑚𝑎𝑥 ≤ 0,     ∀𝑘, j (5) 

ℎ𝑡𝑜(Θ𝑘) =  −𝐵𝑘𝑗 ∗ (Θ𝑘 − Θ𝑗) − 𝐹𝑚𝑎𝑥 ≤ 0,    ∀𝑘, j (6) 

Θ𝑘
𝑟𝑒𝑓,𝑚𝑖𝑛 ≤ Θ𝑘 ≤ Θ𝑘

𝑟𝑒𝑓,𝑚𝑎𝑥,    ∀𝑘 (7) 

0 ≤ 𝑝𝑖 ≤ p𝑖𝑚𝑎𝑥,    ∀𝑖 (8) 

where the objective function (3) is to minimize the generation polynomial costs, assumed linear in this study, 
subject to: (4) real power balance constraints for each node k, where, as stated by Kirchhoff’s laws, demand 
minus nodal generation plus net branch active power flow has to be zero (𝐴𝑘𝑖  is a generation connectivity matrix; 
where its elements are equal to 1 if generator i is connected to node k and 0 otherwise); (5,6) real power thermal 
constraints for each branch, where real power flow on every branch is equal to the branch susceptance, Bkj, 
multiplied by its adjacent node angles difference; (7) voltage angle constraints of each node; and (8) real power 
production constraints for each generator.  

Finally, to incorporate the whole process, from the seismic shock to the restoration of the system, a time-
dependent metric is required. In this study the Energy Not Supplied (ENS) and the Energy Index of Unreliability 
(EIU), presented by Allan and Billinton in [21] are used. As explained in Eq. (9), EIU represents the relation 
between the ENS during the time window of study and the energy demand in the complete study period Edemand. 

𝐸𝐼𝑈 [%] =  
𝐸𝑁𝑆 [𝑀𝑊ℎ]

𝐸𝑑𝑒𝑚𝑎𝑛𝑑 [𝐺𝑊ℎ]
∗ 100% (9) 

4. Risk assessment of spatially distributed systems 
The seismic risk of a network with n spatially distributed components can by assessed by computing the mean 
annual frequency of exceedance, 𝜆𝑃𝑉, of a certain performance variable (PV). This frequency is computed by 
conditioning to a ground motion intensity measure (IM) and using the total probability theorem: 

𝜆𝑃𝑉(𝑝𝑣) = 𝜈𝑃(𝑃𝑉 > 𝑝𝑣) = 𝜈�𝑃(𝑃𝑉 > 𝑝𝑣|𝑰𝑴 = 𝒊𝒎)𝑓𝑰𝑴(𝒊𝒎) 𝑑𝒊𝒎
Ω

 (10) 

where 𝑰𝑴 is a vector of random variables representing the intensities at all locations; 𝑓𝑰𝑴 is the joint probability 
density function of intensities; 𝜈 is mean annual rate of significant seismic events; and Ω ⊆ ℝn is the domain of 
studied intensities. Eq. (10) assumes that the system is restored to its initial state (i.e. all components are 
repaired) before the next earthquake occurs. There are several reasons that make the application of this equation 
very difficult. First, the distribution 𝑓𝑰𝑴 is not a result that can be obtained from conventional PSHA [4], and its 
computation is impractical. Second, the performance of the network (PV) is normally obtained from numerical 
simulations, making it impossible to express in a closed form. Finally, the dimension of the integral is equal to 
the number of network components, making typical numerical quadrature rules highly inefficient. Therefore, it is 
more convenient to estimate the seismic risk using a set of finite stochastic earthquake scenarios generated by 
Monte Carlo simulations, each associated with intensities at all component locations, as explained in Section 2. 
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After the network performances of all simulation have been computed, the distribution of performances can be 
constructed by counting the number of events that surpass different threshold levels: 

𝜆𝑃𝑉(𝑝𝑣) = 𝜈𝐸[𝟏(𝑃𝑉 > 𝑝𝑣)] ≈ 𝜈
1
𝑁
�𝟏(𝑃𝑉𝑖 > 𝑝𝑣)
𝑁

𝑖=1

 (11) 

where 𝑁 is the number of considered scenarios; 𝑃𝑉𝑖 is the performance of the 𝑖-th scenario; and 𝟏(𝑃𝑉𝑖 > 𝑝𝑣) is 
an indicator function (i.e. its value is 1 if 𝑃𝑉𝑖 > 𝑝𝑣 and 0 otherwise). If the scenarios are generated using 
importance sampling, the results must be multiplied by the weights computed during the scenario generation 
process to account for sampling from custom probability distributions. 

𝜆𝑃𝑉(𝑝𝑣) ≈ 𝜈�𝑤�𝑖𝟏(𝑃𝑉𝑖 > 𝑝𝑣)
𝑁

𝑖=1

 (12) 

𝑤�𝑖 = 𝑤𝑖 �𝑤𝑗

𝑁

𝑗=1

�  (13) 

 

 

        
                                                 (a)                                                                   (b) 

Fig. 2 – (a) Northern Chilean System geographic diagram. (b) Northern Chilean System network diagram. 
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5. Risk assessment of the northern Chile electrical network 
The northern Chilean system (SING) serves the regions of Arica-Parinacota, Tarapacá, and Antofagasta, which 
cover 25% of the continental Chilean territory but only 7% of its population. In 2014 the installed generation 
capacity was 3744 MW; where 2100 MW was coal (56%), 1180 MW was diesel (31.5%) and 436 MW was 
GNL (11.5%). The peak demand of the same year was 2363 MW. The system supplies approximately 60% of 
the Chilean mining industry, responsible of 15% of the Chilean GDP and 49% of Chilean exports in 2011. 
Therefore, any interruption in the electrical supply could be economically catastrophic. Fig.2 (a) shows the 
geographic information of the most important components of the SING as of 2014. It is important to note that 
most of the generation is at the coast, while the mining consumers are located in the mountains, approximately 
200 km away. Fig.2 (b) is a diagram that presents the network in detail including 36 substations, 69 lines of 220 
kV and 110kV, 14 generator substations, 43 generators, and consumers (more information in [22]). 

A study time window of one week with an hourly resolution was selected to perform the network 
simulations. Regarding the operation of the system, a simplified unit commitment was performed by running a 
DC-OPF for every hour of the week including 70 MW of reserves. As a result, the unit status scheduling (on/off) 
is determined. When a seismic scenario with damage on the components is simulated, the unit status and start-up 
times are considered when running the sequential DC-OPFs at each time step. Fig.3 illustrates the response of 
the system to four different simulated earthquakes in terms of percentage of energy demand being supplied. The 
figure shows that immediately after the earthquake there is a great loss of energy supply due to physical damages 
in components, and that the percentage of energy demand being supplied increases as the network topology 
changes due to offline components starting-up and damaged components being repaired. Moment magnitudes for 
each of the earthquake scenarios are also presented in the figure; however, the impact on the supplied energy 
also depends on the epicentral location, justifying that a scenario with Mw 7.4 can have a greater impact than a 
scenario with Mw 7.7. 

  
Fig. 3 – Evolution of hourly serviceability (i.e. hourly capacity to supply energy demand) for four different 

simulated scenarios. 
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As explained in the previous section Eq. (11) and (12) were used to compute the mean annual frequency 
of events exceeding different values of EIU from the conventional MCS and with importance sampling, 
respectively. The associated return periods are equal to the inverse of these frequencies (𝑇 = 1/𝜆𝑃𝑉), and are 
shown in Fig.4 (a). The most time consuming step of the methodology is to simulate the operation of the electric 
power system, used to compute the unsupplied energy given the damage states and downtimes of all 
components. However, if a scenario does not generate any component damage, the system will operate normally 
and the operation step is not required. This happens less frequently when using importance sampling since the 
magnitude distribution used for sampling is shifted. Therefore, in order to produce a fair comparison in terms of 
computational time of both methods, the same amount of 𝑁𝑑 = 26,000 earthquake scenarios that generated 
damage were considered in both cases. The total number of originally sampled scenarios, Ns, was approximately 
55,000 and 32,000 for conventional MCS and importance sampling, respectively. Fig.4 (a) also presents a 99% 
confidence interval on the results, which clearly show that the importance-sampling scheme has been successful 
in reducing the variance of conventional MCS. 

The area under the 𝜆𝑃𝑉 curve can be used to estimate the expected energy that will not be supplied in a 
year, commonly known as expected annual loss (EAL) in the literature. Both sampling technics resulted in 
similar EAL of 1.49% (normal MCS) and 1.45% (importance sampling), which have an energy equivalent of 
5.00 GWh and 4.94 GWh, respectively. This common output of seismic risk analyses represents mean losses and 
cannot represent their associated uncertainty. A more comprehensive probabilistic description of the losses can 
be achieved by computing the accumulated losses for all earthquakes that occur in specific time window [23]. 
Fig.4 (b) shows the cumulative distribution functions (CDFs) of these accumulated losses (i.e. non supplied 
energy). The previously computed EALs are equivalent to the expected value of these distributions divided by 
their associated time windows. 

 
Fig. 4 – Results from the seismic risk assessment using conventional MCS and importance sampling: (a) return 

period of events exceeding certain values of Energy Indices of Unreliability; and (b) CDFs of accumulated 
unsupplied energy (ENS) for different time frames. 

 

6. Conclusions 
This work presents a seismic risk assessment methodology for spatially distributed electric power systems, and 
applies it to the electric network in north Chile. The evaluation uses Monte Carlo simulations to stochastically 
generate earthquake scenarios and compute the risk of the system using its response to all scenarios. The 
methodology is probabilistically consistent since it does not rely on simplifications of the seismic hazard or an 
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arbitrary selection of earthquake scenarios used in most of the reviewed literature. However, the consistency 
comes with the cost of increasing the computational effort significantly since the amount of earthquake scenarios 
that must be used is much more than the amount that would be selected deterministically. Therefore, variance 
reduction techniques can be used to decrease the number of scenarios required to generate results with the same 
confidence level. In particular, this work used importance sampling as an alternative to generate earthquake 
scenarios, resulting in an improvement in the confidence intervals of the results of the MCS. 

The effects of future earthquakes on the electric network were characterized by the unsupplied energy 
during the first week following each seismic event. The resulting risk was expressed in terms of the commonly 
used Expected Annual Loss, approximately 5 GWh, and the mean annual frequencies of exceedance. Results are 
also included for the complete accumulated distribution of losses. This last result is more meaningful for 
decision makers since it provides the probabilities of exceeding certain loss thresholds. Probability distributions 
as the ones computed in this work can be used to consider the effects of future earthquakes at the design phase of 
an electric network or to assess the effectiveness of possible mitigation actions that can be taken to decrease the 
associated seismic risk. 

Possible future improvements of the risk assessment methodology would be to consider aftershocks, 
cascading effects that reflect the propagation of tripping components, a more complex unit commitment model, 
and to replace the weekly time window used to calculate the unsupplied energy following an earthquake by the 
time required to completely restore the service. 
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