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Abstract 
After the January 2010 earthquake, over 300,000 damaged houses were significantly affected by the earthquake according 
to the Post-Disaster Needs Assessment issued by the Government of Haiti. The damaged homes from the earthquake 
resulted in over 1,000,000 individuals left without housing. In response to the earthquake, Build Change, in collaboration 
with Degenkolb Engineers, developed a Seismic Evaluation and Retrofit Manual for small masonry houses in Haiti in order 
to facilitate the repair and strengthening of damaged homes. The aim of the manual was to provide a rapid, explicit and 
systematic seismic evaluation and retrofit procedure which could be implemented during post-earthquake reconstruction to 
not only speed the return of the displaced population to safe housing, but also create a permanent improvement in 
construction practices and mitigate future risk to the homes at a lower cost than building replacement.  

The manual procedures are based on the methodology of the U.S. standards, ASCE 31 and ASCE 41 and adapted for the 
applicable building types and materials used in Haiti. The most common construction type for housing in Haiti is 
unreinforced or partially confined concrete block masonry, the latter of which is not explicitly addressed in the ASCE 
standards. The performance criteria of the manual is to achieve life-safety performance in the design basis earthquake, based 
on the seismic hazard defined in the Code National du Bâtiments d’Haïti. The procedures identify key potential seismic 
deficiencies through a checklist format and require basic analysis, and then outline the corresponding retrofit techniques that 
can be used to address these deficiencies when applicable. For example, a simplified check is done on the lateral strength of 
the building shear walls versus the demand. If found deficient, options are outlined to either increase the building ductility 
through confinement of the masonry and thus reduce the demands on the walls, or to augment the wall strength to increase 
the capacity. 

The Haitian Ministère des Travaux Publics, Transports at Communications (MTPTC) adopted the manual procedures as the 
technical annex to their Guide for Building Retrofit (Guide de Renforcement Parasismique et Paracyclonique des 
Bâtiments). As of mid-2015, Build Change, working with partners, has provided technical assistance to engineers, 
homeowners and builders to evaluate and retrofit more than 1,400 homes and in addition, at least 10 other organizations 
have also implemented housing retrofit programs during reconstruction in Haiti based on the seismic evaluation and retrofit 
procedures and manual developed. 

This paper outlines the key challenges and solutions identified in implementing the evaluation and retrofit of confined and 
unreinforced masonry houses in Haiti following the January 2010 earthquake. These challenges relate to the development of 
applicable and feasible evaluation and design criteria as well as viable retrofit techniques, to the training of engineers, 
builders and homeowners, to creating accountability in the construction management process and to maintaining quality 
control of the construction works. 
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1. Introduction 
In the urbanized metropolitan area of Port-au-Prince, Haiti the preferred structural typology for residential 
construction is concrete hollow block masonry. The informal areas of the city are densely populated with this 
housing type, see Fig. 1. It is widely accepted because of the durability compared to lightweight materials. A 
solid masonry wall is associated with modernity to many homeowners and provides a secure place to live in. The 
great majority of houses built in informal neighborhoods are not designed by an engineer or an architect. It is 
usually the builder who decides with the homeowner the layout of the house and then constructs it, often without 
having received formal training. The result is that existing houses typically have some confining elements but 
often key elements are missing, under designed or poorly connected. 

 

 
Fig. 1 - Picture of an informal settlement on the hills of Carrefour Feuilles, Port-au-Prince, Haiti 

Observations of existing informal house constructions indicate that the vertical load path is generally well 
understood by builders and homeowners. For example, the use of columns at wall intersections is a common 
practice. However, the upper ring beams, which brace the top of wall out-of-plane, or vertical confinement of the 
openings, that confine the wall piers at either side of the opening, are typically missing, indicating that the 
behavior of the structure when subjected to lateral loads was not well understood by the builders and 
homeowners.  
 

In informal housing construction in Haiti, the existing material quality is often poor due to lack of 
enforcement or regulation, lack of knowledge and training in the work force, as well as lack of funds to purchase 
improved materials, implement additional reinforcing elements or hire more skilled builders. Masonry blocks for 
construction are primarily bought in the informal market without quality control, often in the same neighborhood 
where the house is constructed. The compressive strength can vary significantly from one local block producer 
to another.  Build Change collected and tested block samples from 170 block producers in the Port-au-Prince 
area over the past several years as part of the “Building the Capacity and Increasing Demand for High-Quality 
Blocks in Haiti” project.  Six blocks were tested from each producer prior to quality production training; the 
lowest resulting net area compressive strength for a single block of the six varied from 0.3MPa to 7.0 MPa 
across all producers, with an average of 3.1 MPa (for the lowest strength sample of each producer) [1].  The low 
quality of blocks can be partially attributed to the poor curing techniques used by producers as they try to speed 
up production and thus sales to stimulate their often inadequate cash flow.  
 

The insufficient quality and control of materials, the lack of formal skill in the construction sector, and the 
poor understanding of earthquake-resistant construction concepts, compounded by reduced cash access for 
incremental improvements to construction practices, contributed to the vulnerability of informal housing and 
high incidence of damage and collapse of buildings in the January 2010 earthquake. Within this context 
following the 2010 earthquake, Build Change, a non-profit social enterprise, in collaboration with Degenkolb 
Engineers, a U.S.-based seismic engineering firm, developed a Seismic Evaluation and Retrofit Manual for small 
masonry houses in Haiti [2] (Manual) in order to facilitate the repair and strengthening of damaged homes, to 
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stimulate a permanent improvement in construction practices and to help mitigate future risk to the homes at a 
lower cost than building replacement. 

2. Development of Evaluation and Retrofit Design Criteria and Procedures 
It was critical that the procedures for evaluation and retrofit design be simple in order to be applied broadly with 
less time and expertise investment in the post-disaster setting, as well as be easily applied to the local existing 
building types and practices.  To address the need for simplicity, the Manual procedures are based on the U.S. 
standards, ASCE 31 [3] and ASCE 41 [4], using a tier-1 checklist type approach combined with simple 
calculations for evaluation and a deficiency-only retrofit approach.  However, these standards do not explicitly 
address the confined masonry building typology in Haiti. The performance-based approach was adapted to 
confined masonry; the masonry walls were identified as the deformation-controlled elements of the system and 
the confining ties as the force-controlled elements.    

The Haitian Building Code (Code National du Bâtiment d’Haiti in French, or CNBH) [5] does not yet 
address existing structures.  However, the Interim Rules for Calculating Buildings in Haiti (Règles de Calcul 
Intérimaires pour les Bâtiments en Haïti in French) [6] issued by the Ministère des Travaux Publics, Transports 
et Communications (MTPTC) applies for structures in Haiti not yet addressed by the CNBH.  These Interim 
Rules reference the 2009 International Building Code (IBC) [7] as one of the acceptable codes to use for design, 
and ASCE 31 and 41 are applicable for existing buildings under the IBC.    

The performance criteria in the Manual is structural life-safety in the design-basis earthquake.  Structural 
life-safety performance, as defined in ASCE 41, is the post-earthquake performance state in which the structure 
has damaged components but retains a margin against onset of partial or total collapse.  The design basis 
earthquake is taken as two-thirds of the acceleration for the earthquake hazard with a 2% probability of 
exceedance in 50 years, modified by the applicable site factor.  The acceleration parameters for the 2% in 50 
year earthquake are outlined in the CNBH for Haiti, and for the house structures applicable in the Manual, the 
short period (0.2 second) acceleration parameter is used. For Port-au-Prince, the resulting design acceleration, 
Sa, is equal to 1.05g, for Soil Type D. 

2.1 Applicability of the Methodology 
The Manual is applicable for existing, typical low-rise masonry concrete block houses found in Haiti, described 
generally as:  

- Foundations: Stone masonry, continuous. 
- Walls: Unreinforced concrete masonry bearing walls with or without reinforced concrete confining elements. 
- Suspended floor slabs and roofs: Reinforced concrete slabs and joists with masonry void-forms. Roof 

systems may also be constructed of lightweight metal and wood framing systems.   

The Manual was developed to address confined masonry houses from 1 to 3-stories tall in any seismic zone, 
and unreinforced masonry houses up to 2-stories tall in areas of low to moderate seismicity and only 1-story tall 
in areas of high seismicity.  It is intended for use by qualified engineers. 

2.2 Deficiency Identification Checklist  
A checklist was developed based on the ASCE 31 tier 1 checklists and adapted to the local context to enable 
identification of potential seismic deficiencies in a home during a single site visit and with simple calculations.  
For each item, the engineer can select conform, non-conform or not applicable. A house without a non-conform 
for each of the checklist items is considered to meet the life safety performance goal.  Table 1 lists the twenty 
nine deficiency identification checklist items, divided in six categories. 

2.3 Wall Area Percentage Check 
As part of the deficiency identification checklist, a simplified analysis of lateral resistance of the structure is 
performed using the wall area percentage check (Item 4.4). The wall area percentage is the ratio of the cross-
sectional wall area divided by the area of the floor or roof above. The existing wall area percentage, WAPex, 
should be greater than the calculated wall area percentage required, WAPreq, to ensure enough lateral resistance, 
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Eq. 1. The check is performed individually for each primary direction, at each level.  If any case (any direction 
or level) does not meet the requirement, this checklist item is considered non-conform. 

 Required Wall Area Percentage (WAPreq) < Existing Wall Area Percentage (WAPex) (1) 

Table 1 - Deficiency Identification Checklist Items 

CATEGORY   ITEM CATEGORY   ITEM 

SITE 

1.1 Liquefaction BUILDING 
SYSTEM 
(CONTINUED) 

3.7 Walls 

1.2 Slope Failure 3.8 Cantilever Upper Level 

1.3 Site Retaining Walls 3.9 Damage 

1.4 Surface Fault Rupture 

MASONRY 
WALLS  

4.1 Masonry Confinement 

FOUNDATION 

2.1 Foundation Wall 4.2 Openings 

2.2 Foundation Performance 4.3 Top Ring Beam 

2.3 Overturning 4.4 Wall Area Percentage 

2.4 Ties Between Foundation Elements 
BUILDING 
CONFIGURATION  

5.1 Torsion 

2.5 Deterioration 5.2 Adjacent Buildings 

BUILDING 
SYSTEM 

3.1 Materials 5.3 Vertical Discontinuities 

3.2 Load Path 

BUILDING 
COMPONENTS  

6.1 Freestanding/Discontinuous Columns 

3.3 Number of Stories 6.2 Slab Openings at Shear Walls 

3.4 Story Heights 6.3 Parapets 

3.5 Mass 6.4 Stairs 

3.6 Floor and Roof System    
 

2.3.1 Calculation of the Required Wall Area Percentage 

The Required Wall Area Percentage (WAPreq) depends on the seismicity of the zone and other characteristics of 
the building. To simplify the calculation, a Basic Wall Area Percentage, bWAP, is first established for a general 
default case, and then modified by C-factors according to the characteristics of the building under evaluation, per 
Eq. 2, for each direction and story being evaluated to determine the corresponding WAPreq.   

 𝑊𝐴𝑃𝑟𝑒𝑞 = 𝑏𝑊𝐴𝑃𝑟𝑒𝑞 ∗ 𝐶𝐵 ∗ 𝐶𝑄 ∗ 𝐶𝑅 ∗ 𝐶𝐿 ∗ 𝐶𝑁 (2) 

Where CB is the block strength factor, CQ is the construction quality factor, CR is the retrofit factor, CL is 
the level factor, and CN is the net area factor. The bWAPreq is established, by assuming default values and 
checking the acceptance criteria.  The acceptance criteria for shear in the masonry walls per Eq. 3, as a 
displacement-controlled action, is taken as:  

  𝑉𝑛𝑒 ≥
𝑉𝑢𝐷
𝑚

 (3) 

The capacity, Vne, must be great than the demand reduced by the system modification factor, m.  The 
demand, VuD, is calculated using the pseudo lateral force as per Eq. 4. 

   𝑉𝑢𝐷 = 𝐶 ∗ 𝑆𝑎 ∗ 𝑊 = 1.5 ∗ 1.4 ∗ 𝑆𝑑𝑠 ∗ 𝐴𝑏 ∗ 𝑁 ∗ 7.2𝑘𝑃𝑎 (4) 

 C is a modification factor to relate expected maximum inelastic displacements to displacements calculated 
for the linear response and is taken as 1.4 as a default. The seismic weight, W, is the product of the area of the 
building, Ab, multiplied by the number of stories, N, and an average seismic weight per story, w, taken as 
7.2kPa. The spectral acceleration is Sds, in accordance with the CNBH. Additionally, even though the checklist 
includes a simplified check of torsional regularity, a factor of 1.5 is included to take into account torsional 
effects.   
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The lateral capacity of the block masonry wall in a given direction, Vne, is given in Eq. 5, where vme is the 
expected shear resistance of the block and Aw is the gross cross-sectional area of the wall.  The default expected 
shear resistance of blocks was taken as 0.43MPa, based on an expected unit net area compressive strength of 4.8 
MPa and corresponding expected masonry compressive strength of 3.9 MPa. This expected unit compressive 
strength was estimated from samples collected and tested in compression to represent average-to-good quality 
blocks found in the locally available markets.  When existing houses are observed to use slightly lower quality 
blocks, indicated by color or aggregate type, the evaluating engineer will use the block strength factor to adjust 
the required wall area percentage up to account for the strength reduction (the next tabulated value in the Manual 
corresponds to an existing block strength of 2.8MPa). In cases where the block is found to be of poor quality or 
unsound (corresponding to very low strength masonry), the wall is reconstructed in better quality blocks as part 
of the retrofit.  Typical concrete blocks in Haiti are approximately 55% solid, and this value was taken.   

𝑉𝑛𝑒 = 𝑣𝑚𝑒 ∗ 𝐴𝑤 ∗ % solid                                                                 (5) 
Through applying Eq. 4 and Eq. 5 to the acceptance criteria with the default values noted, bWAPreq, can 

be determined by solving for the ratio Aw/Ab as in Eq. 6. The component modification factor, m, is 2.5 for 
confined masonry walls and 1.25 for the unreinforced masonry walls.    

  𝑏𝑊𝐴𝑃𝑟𝑒𝑞 = 𝐴𝑤
𝐴𝑏
≥ 6.4% ∗ 𝑁 ∗ 𝑆𝑑𝑠

𝑚
  (6) 

 Supplemental information on the C factors used to adjust the WAPreq in evaluating individual buildings is 
included in the Manual and discussed briefly here. The block strength factor, CB, is used to adjust the WAPreq  
where strength of existing masonry varies from the default strength. The construction quality factor, CQ, is used 
to adjust the WAPreq based on the quality of construction. The retrofit factor, CR, is taken as 0.75 for the 
evaluation of the existing building and as 1.0 for the evaluation of the retrofit design. The level factor, CL, is 
used to adjust the WAPreq depending on which particular story is being analyzed in a multi-story building. CL 
varies based on the number of stories in the building, the story being analyzed and the roof type according to the 
vertical distribution of forces and adjustment to the appropriate ASCE 31 modification factor, C.  The net area 
factor, CN, is used to adjust the WAPreq when the net area of the existing blocks varies from the default 
percentage (55%).  

2.3.2 Existing Wall Area Percentage 

The existing wall area percentage, WAPex, is calculated for a given level and direction by adding the areas of all 
the walls in the corresponding direction and level per Eq. 7.  Only wall lengths that are at least 1.0m long 
(excluding openings) are considered to contribute to the lateral resistance. 

  𝑊𝐴𝑃𝑒𝑥 = ∑𝑡𝑚𝑖𝐿𝑚𝑖
𝐴𝑏�  (7) 

Where, tmi = thickness of wall i, lmi = length of wall i, and Ab = Area of the building plan. If the WAPex is 
found to be below that required, WAPreq, the building does not conform and corrective action is required for the 
level and direction found to be non-confirming as part of the retrofit scheme.   
2.4 Retrofit Design 
In developing the retrofit techniques, methods using local practices were prioritized in order to help ensure labor 
and materials would be readily available.  However, small changes were made in common practices to increase 
the suitability for areas of seismic hazards, such as ensuring proper laps and detailing of reinforcing.   

After the deficiencies are identified, a suitable retrofit scheme may be developed directly from the 
checklist evaluation process, such that for each non-conforming item in the checklist, a strategy to convert it to a 
conforming condition is developed.  Site category deficiencies are difficult and costly to correct and might 
prevent a full retrofit to life safety performance. Foundation category deficiencies are critical because if they are 
found to be non-compliant, the structure might need to be rebuilt from the foundation up, eliminating the option 
for retrofit.  Building system deficiencies can be corrected by demolishing and rebuilding the non-compliant 
element. For example, demolishing a cantilever wall and lining up a new one with the wall below.  Masonry wall 
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seismic deficiencies can be addressed by adding the required confining elements. See an example retrofit detail 
in Fig. 2. In some cases, replacement of the wall or infill of an opening may be required.  When the existing wall 
area percentage does not meet that required, the wall area can be supplemented as described below.  Building 
configuration deficiencies can be corrected by balancing the shear wall layout to reduce torsion, or providing 
vertical elements for continuity (or removing 
discontinuous ones above). Adjacent building deficiencies 
may require an intervention in the adjacent building, or the 
creation of a separation joint. Building component 
deficiencies such as parapets and stairs can be simply 
corrected by removal and replacement of the element, or 
by supplemental support or reinforcement.  Once the 
retrofit scheme is developed, the checklist is applied to the 
design to confirm that there are no longer non-conforming 
items in the building and therefore that the house meets 
the desired life-safety performance goal. 

 

Fig. 2 - Retrofit detail to install a new vertical confining tie at the intersection of two existing walls 

2.4.1 Effective Wall Area Percentage 

When the existing wall area percentage is found to be insufficient, there are two primary options for the retrofit 
scheme – to add supplemental wall area or to reduce the amount of wall are required.  To increase the actual 
shear wall percentage, the Manual identifies several options: add new masonry shear walls, or increase the length 
of walls that are less than 1m long, double the thickness of existing shear walls, infill doors and/or windows to 
increase the length of solid shear wall panels, or increase the effective area of the existing walls by an exterior-
applied cement mortar layer or by adding a reinforced concrete overlay to one face. 

Alternatively, to reduce the required wall area percentage, the Manual identifies several options: introduce 
reinforced concrete confining elements to permit an increase in the m-factor, improve the quality of existing 
walls by repairing them, or if the block is low strength, replace them with new walls to effectively decrease the 
CQ factor, or decrease the seismic mass of the building (for example, demolish an upper story). 

When options to supplement the existing wall area are chosen, the effective wall area percentage (WAPeff) is 
calculated by accounting for the addition of structural elements to the WAPex.  To simplify the retrofit design, 
the additional resistance provided by new structural elements is accounted for using K-factors, which relate the 
strength of the added element to the strength of the block masonry walls in the development of bWAPreq.  K-
factors for new masonry, thin cement plaster overlays and thicker reinforced concrete overlays are included in 
the Manual.  The WAPeff accounting for the retrofit elements is calculated by Eq. 9. 

  WAPeff = Am
Ab

+ ∑KiLiti
Ab

 (9) 
Where, Am = sum of existing wall areas in the level and direction under consideration that will remain in 

the retrofitted state, Ab = the plan area of the building, Ki = adjustment factor for new element i, Li = length of 
new element i in the level and direction under consideration, and ti = thickness of the new element i. 

3. Application of the Evaluation and Retrofit Procedures 
In practice, the Manual workflow starts with the engineer performing a site visit to observe and document the 
existing condition of the house and fill out the deficiency identification checklist.  The measurements of the 
house are taken and sketches of the site plan and each existing floor plan are made. The evaluator takes pictures 
of the identified seismic deficiencies and the exterior façades of the house. By following the evaluation checklist 
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and performing the wall area percentage check, the engineer evaluates the building and then designs directly a 
retrofit solution as needed. The engineer then develops the retrofit plans for each level and a roof plan, as 
needed, to indicate the required interventions. See an example existing and retrofit design plans in Fig. 3.   

 
Fig. 3 - Existing (left) and retrofit (right) plans of an unreinforced masonry house retrofit to a confined masonry 

house (circled columns indicate new vertical ties and hatched walls indicate new walls) 

3.1 Homeowner Driven Retrofit Projects 
Several homeowner driven retrofit projects have implemented the Manual procedures since 2010 and at least 
1,400 homes have been retrofitted with technical assistance from Build Change in various neighborhoods in the 
Port-au-Prince area. Homeowner driven construction puts the homeowner at the center of decision making and 
responsibility for the project so that they are actively participating from design through construction.  

Retrofitting is particularly suited to the homeowner driven approach because the technical solutions for 
the retrofit can be varied to suit the needs of the homeowner. For example, in cases where a homeowner would 
like to add a new story to the house in the future, the retrofit can be designed so that the existing home can safely 
resist the additional earthquake demands from the future level when it is constructed.  Homeowner satisfaction is 
further increased because often retrofitted houses are improved, safer versions of the houses that the same 
families lived in before the earthquake [8].  See Fig. 4 for an example of a retrofitted house. 

   
Fig. 4: A home in Port-au-Prince before (left) and after (right) a seismic retrofit 

3.1.1 Example Project Scope 

One example retrofit program used the Manual to improve houses in Carrefour Feuilles, an area with a 
large density of informal housing construction in Port-au-Prince. Following a rapid assessment of approximately 
1,100 houses and a geotechnical investigation in the area, technical criteria for eligibility of homeowners to 
participate in the program was established. The resulting intervention of the project is illustrated in Fig. 5, where 
224 houses for 508 families were retrofitted and in some cases expanded vertically or horizontally.  Orange and 
red hatched buildings were retrofit, while the purple buildings indicate those that were confined masonry (CM) 
or unreinforced masonry, but did not participate in the program. 
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Fig. 5: Map of house structure typology and intervention in Carrefour Feuilles, Port-au-Prince 

3.1.2 Example Project Costs 

The resulting cost of retrofit in this example project was $130/m2 but the price varied from as low as $30/m2 to 
as high as $300/m2 depending on the intervention required. Total final retrofit costs per building were on average 
$6,422. However, the number of housing units in each building (defined as private, exterior accessible spaces) 
varied from 1 to 9, with and average per building of 2.5.  The least-cost retrofit was $1680, for a single housing 
unit building, and the most expensive retrofit was $16,040, for a 6-housing unit building [9]. Some of the higher 
cost retrofits were so because the work included not only seismic retrofit activities, but also layout 
reconfiguration due to adjacent infrastructure projects.  The costs noted include the costs of building materials 
with transportation to the site, all labor including demolition and debris removal, and the rental of formwork and 
shoring for construction.  

Compared to new construction and transitional shelters (t-shelters) used following the 2010 earthquake, 
retrofit is a competitive option. The average price per square meter for a new confined masonry house in Port-
au-Prince or for a T-shelter is approximately $250/m2 [10].  

Prior to the start of construction, the allocated budget for each house in the example project also included 
a contingency of 12% of the total construction cost.  Among the structures retrofit, half of them had unforeseen 
costs that required budget above the planned contingency. The additional budget required per house varied from 
as low as $25 to as high as $4000, depending on the extent of unforeseen work and the willingness or capacity of 
the homeowner to contribute more money. Some of the most costly unforeseen conditions were due to 
replacement of existing walls and existing suspended slabs.  Of the houses with unforeseen costs, 70% of the 
adjustments were less than $1000, and the overall budget envelope for all houses increased by 7% due to 
unforeseen work [9]. 

3.2 Decision Making in Evaluation and Design 
The lack of enforced construction standards and the diversity of foremen knowledge in good construction 
practices made existing building evaluation challenging in some cases.  However, with experience, engineers 
developed good judgement and improved the evaluation and retrofit process. Based on the projects performed in 
Port-au-Prince, common issues in evaluation that can impact the retrofit design are discussed below. 

3.2.1 Walls 

Existing walls are generally not plastered or painted and therefore it is easier to analyze the load path and the 
quality of blocks, but it also increases deterioration of the walls due to weather exposure. When evaluating a 
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wall, the condition of the materials, the layout of the blocks and damage state of the wall should be considered in 
order to determine if replacement or repair is required in the retrofit.  

The quality of the mortar can be evaluated to see if the color of the mortar indicates it is made from 
unwashed sand, or if there are signs of erosion in the joint, or if the joints are too thin or too thick.  Walls in 
which the mortar can be scraped away by a nail should not be considered shear walls and should be replaced as 
needed.  

The layout of the blocks is also an indicator of the quality of the wall construction. It is not unusual to see 
pieces of block in an existing wall or a joint layout not staggered. If the construction quality is so poor, or the 
deterioration so great, that there is risk of collapse, the engineer should recommend replacing the wall.  If there is 
not an apparent collapse risk and the blocks simply have a non-optimal layout or insufficient toothing at the 
column, wall replacement may not be required and the evaluating engineer can consider increasing the 
construction quality factor to account for these issues.  

Cracks in existing walls can be superficial and concern only the cement plaster covering; in that case the 
plaster can be removed around the crack and repaired.  If the masonry is cracked on only one side of the wall, 
repair during the retrofit should be made. In the cases where the crack is visible on both sides of the masonry, it 
is recommend to replace the damaged portion of wall. In Fig. 6, the crack in the wall was previously repaired: 
first filled with unwashed sand mortar and pieces of rubble, and then plastered over.  This condition would 
require a larger, more significant repair with adequate construction materials, and potentially replacement of the 
wall.  

 
Fig. 6 – Poorly repaired wall crack 

3.2.2 Confining Columns 

The evaluation of existing confining columns is facilitated by the fact that most column reinforcing extends 
vertically and is exposed above the structure.  This visual accessibility provides useful information that cannot 
be easily observed otherwise.  Existing reinforcing encountered includes both smooth and deformed bars. The 
diameter and the number of reinforcing can vary from a column to another and within the same column. For 
example, in order to save money, a builder may have used a four-bar column with three #4 bars and one #3 bar. 
The quality and the spacing of the stirrups can sometimes also be evaluated from the extension of the column 
reinforcing, particularly to understand whether the stirrups are properly hooked at both ends. 

The quality of the confining column concrete can be evaluated visually, looking for signs of deterioration, 
aggregate segregation, or thin concrete cover.  The quality of the concrete can also be evaluated looking at and 
tapping on exposed rough concrete. In Haiti, use of poor quality sand and a lack of sufficient cement in the 
concrete mix is a common issue. 
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Very few existing confining columns are built to standards for new construction, see Fig. 7; nevertheless 
the Manual procedures do not aim to replace all the columns of a house. Engineering judgement is needed to 
evaluate the adequacy of an existing column depending on the role of the column in the structure. For example, a 
confining column in a deteriorated state, particularly with corroded reinforcing, or very poorly built should be 
replaced. A confining column that does not meet all of the new construction standards, but is in decent state may 
be kept and still serve to adequately confine an existing wall.  

Following the capacity based approach, an existing masonry wall, with lower shear strength than that 
which would be used for new construction, would sustain lower shear forces than a new stronger wall. Thus the 
demands on the confining elements are proportionally lower and an existing column, although not compliant 
with new construction standards, can still be sufficient to resist the axial tension demands, and ensure the 
confinement of the masonry of an existing wall. When a new wall is added with good quality blocks and mortar, 
a new column is built to maintain an appropriate balance between the strength of the confining element and the 
masonry elements. 

     
Fig. 7 – Left – Existing column extension with (3) #4 and (1) #3 bars 

Right – Existing column extension with smooth rebar and stirrups already placed 

3.2.3 Slabs 

The suspended slabs are a critical element during the evaluation, because a house retrofit without slab 
replacement is relatively inexpensive, but if slab is replaced, the price increases much more. 

During the example project in Carrefour Feuille, retrofits of 35 houses with existing suspended slabs were 
performed. In the evaluation phase, nine of the houses (approximately one quarter) were identified to need slab 
replacement due to the poor condition of the existing slab, see Fig. 8.  However, during the construction phase, 
an additional four houses were added to the number of houses needing slab replacement [9].  This represents a 
total of about 40% of the existing slabs requiring replacement (foreseen and unforeseen), a 15% increase due to 
unforeseen conditions. 

 
Fig. 8 - Existing slab in poor condition 

It is common for the ceiling plaster below the slab to appear to be in good condition, but when 
construction starts and the slab vibrates more than usual, the plaster can collapse and expose corroded 
reinforcing (Fig. 8).  The high rate of slab replacement required (40%) can be attributed to the poor construction 
techniques used during the original slab pour – primarily lack of adequate concrete cover below the reinforcing.   
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Several techniques can be used to correctly evaluate the existing slab condition: 1. A visual assessment to 
understand if water can stagnate on the roof above (accelerating corrosion) and to assess below if there are signs 
of delaminating plaster or exposed rebar.  2. Information on past ceiling repairs can be requested from the 
homeowner to know if the slab was previously repaired to hide corroded reinforcing. 3. Finally, destructive 
investigation, such as chipping or removal of plaster, gives a clear understanding of the state of the slab.  

3.3 Construction Quality Control 
It is important that the design is implemented well during construction so that the performance of the house can 
meet the design goals.  Systems for accountability with each of the actors in the construction process improved 
the quality.  Engineers used standard quality control forms to document their observations, recommendations and 
the ongoing quality of work.  Builders were held accountable through payment and future work opportunities to 
follow the retrofit design and specifications.  Homeowners were held accountable to purchase the correct 
materials and manage the construction well through conditional subsidy disbursements, as they received funding 
for the work in phases and only after the prior phase was managed properly.   

Quality control tools help to maintain a high level of quality, particularly when multiple house retrofits are 
active in a project at a given time.  Quality control checklists were developed to be used by supervising 
engineers to maintain quality on the construction site and to keep record of the work.   

The construction quality checklist outlines each step in the construction process for a particular structural 
element, such as foundations, new columns, new walls, reinforced concrete overlays, wall opening 
reinforcement, wall opening infill, and concrete roof and light weight roof construction. The checklist also 
includes specific detail requirements, such as the size, quantity and detailing of reinforcement, the concrete mix 
proportions, etc.  Guidance on documenting each step is provided as well as a method for rechecking work that 
was originally identified to be non-conforming and required correction.   

Even though the builder and the homeowner are trained to select and purchase good quality material, the 
engineer is also responsible to check the quality and proper storage of materials on site. The main issues for 
material quality encountered in implementation were poor quality sand and blocks. When poor quality materials 
are found on site, the homeowner is instructed to discard or return the poor quality materials and replace them 
with adequate ones before authorizing the builder to proceed with work. 

4. Training the Actors in the Construction Value Chain 
4.1 Builder Training 
Construction quality and foremen skills were often found to be unsatisfactory due to lack of training and 
capacity and so training of builders before and during retrofit work was required. When the training of builders 
included the following key aspects, it was most successful in improving the quality of construction: 1. Initial 
verification of the builder’s knowledge prior to the start of training to understand if the builder has the minimum 
construction experience necessary to successfully complete the training.   2. Self-assessment by the builder in 
order to identify which skills require supplemental formal training. 3. Theoretical training about earthquake 
engineering, material quality, load path, etc. 4. Practical training in the required skills identified, mimicking the 
site conditions as closely as possible through training stations. 5. Verification through testing that the builder can 
demonstrate all of the skill required. 6. Certification of the builder for all portions of the required work, based on 
successful verification. 7. On-the-job training as the builder implements new skills in a house retrofit project. 

4.2 Homeowner Education 
As the manager of the retrofit work on their house, it is important for the homeowner to be knowledgeable in: 
understanding the basics of building behavior in an earthquake, how to purchase good quality materials, and how 
to identify generally good and bad construction practices the builder may be using on site.  Training for the 
homeowners participating in the retrofit program included these topics, using materials that were highly visual 
with videos, models and drawings to make the technical concepts more accessible. 

4.3 Local Engineer Training 
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Engineer training in the use and application of the evaluation and retrofit methodology, both through theoretical 
and on-site scenarios, was critical to project implementation.  The engineer must understand how to properly 
evaluate a house, develop the retrofit design and provide construction quality supervision.  He or she must be 
able to compile the elements of the retrofit design package, including drawings such as the site plan, plans of the 
existing structure, retrofit plans and roof plan, the evaluation checklist of the seismic deficiencies, the 
calculations of the wall area percentage, the scope of the retrofit work to explain to the homeowner, and the bill 
of quantities and cost estimate of material, labor, and rental costs. 

4.4 Block Producer Training 
Due to the very low quality of the existing blocks available in the informal market in the Port-au-Prince area, 
block producer training and certification was performed.  After training, producers following the 
recommendations given, produced block with an average net area compressive strength of 7.9 MPa, up 
significantly from the lowest existing block compressive strength average of 3.1MPa [1].  Homeowners were 
trained in how to identify and avoid poor quality blocks, and were required to purchase better quality, stronger 
blocks for the retrofit work.  

5. External Risk Factors 
Outside of technical challenges, implementation of a retrofit program in an informal zone can have non-trivial 
external risk factors.  These are not addressed at length here, but need to accounted for in project development 
and can include items such as community acceptance or prioritization of the retrofit work and engagement or 
education of the community, political instability (national, regional or communal), lack of infrastructure such as 
electricity, roads, water, or other, violence and insecurity, and availability of funding and distribution 
mechanisms or systems. 

6. Conclusions 
The experiences in Haiti gained through several retrofit programs since 2010 indicate that a post-earthquake 
housing retrofit program, implementing simplified evaluations and retrofit procedures is feasible and can be 
more economical than new construction while still improving the safety and resiliency of the affected areas.  It is 
important for variations in the existing structure quality and condition to be identified during evaluation, and 
addressed as needed in the retrofit plans, to reduce cost increases during construction.  However, due to infinite 
variations and inevitable unforeseen conditions in existing buildings, cost contingencies and flexibility should be 
accounted for in the retrofit project funding set up.  For effective implementation of a retrofit program, it is 
important for there to be accountability mechanisms for each actor in the project and for the technical capacity of 
all actors to be at the required proficiency for their role.  Non-technical external factors, including some 
particular to informal construction, require consideration in the overall project planning. 
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