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Abstract 
We describe three achievements for a ground motion simulation. First, we propose a kinematic modeling in which rupture 
delay time is governed by an eikonal equation on Riemannian manifold and develop a coupling method between the eikonal 
solver and a ground motion simulation. In general the rupture delay time is depending on the fault shape. So we derive the 
equation by considering the Riemannian metric of the fault surface and give a detailed discretization of its difference 
scheme to deal with a curved surface fault. Next, in order to explain the effect of spatially discontinuous non-uniformity of 
rupture velocity, we introduce an isochrones jumping intensity and obtain a new decomposed isochrones formula with 
mathematical rigor. It is known that the representation theorem with the Green’s function can be rewritten into an 
expression with a contour integral by the isochrones theory. The new formula says that the known isochrones formula for 
velocity can be decomposed into a trend component and a disturbance component. The disturbance component consists of 
the isochrones jumping intensity. Finally, by applying our ground motion simulation coupled with the eikonal solver and the 
decomposed isochrones formula, we investigate some relations between the non-uniformity of the rupture velocity and 
pulse-like disturbance of the ground motion velocity. Our simulations show that the disturbance of velocity waveform 
corresponds with that of rate of change of isochrones band area. It turns out that the pulse-like disturbance of velocity 
waveform occurs when isochrones move across the region where rupture velocity varies discontinuously. Thus we can 
explain that the pulse-like disturbance of the ground motion velocity occurs when the isochrones jumping intensity has 
nonzero value. We, however, think that further discussion with respect to the decision of rupture velocity is required. So we 
would like to study the dynamic rupture model in order to understand how to give the spatial distribution of rupture velocity 
in future works. 

Keywords: ground motion simulation, eikonal solver on Riemannian manifold, isochrones jumping intensity 
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1. Introduction 
Rupture propagation process is an important factor for ground motion on very near site from active faults. 

Actual faults are not flat and have curved shapes. Their rupture propagation is spatially non-uniform and its 
velocity is distributed discontinuously. Thus such realistic kinematic modeling for ground motion simulation is 
required increasingly. In our research we propose a kinematic modeling with which we can consider both a 
curved surface and spatially discontinuous non-uniformity of rupture velocity. Especially we develop an eikonal 
solver on Riemannian manifold and a coupling method between the eikonal solver and a ground motion 
simulation. Moreover we introduce an isochrones jumping intensity and extend a known isochrones formula to 
obtain a new decomposed formula. Using our coupling method and isochrones formula, we investigate some 
relations between pulse-like disturbance of ground motion and non-uniform rupture process. 
 In many practical ground motion predictions, a kinematic modeling approach has been used because of its 
numerical simplicity. In the kinematic modeling approach, a slip velocity function is important and many 
functions have been proposed so far. [1][2] The slip velocity function modeling can give a detailed slip process 
at every source point, but it says nothing with respect to the spatially non-uniformity of rupture velocity. Real 
fault surfaces are not necessarily flat and may bend and have curved shapes. This is why we propose a kinematic 
modeling with which we can consider both a curved surface fault and spatially discontinuous non-uniformity of 
rupture velocity. In our modeling we assume that rupture propagation is governed by an eikonal equation in a 
curved space. We derive the equation on a two dimensional Riemannian manifold so that we can deal with a 
curved surface faults. Then we develop the eikonal solver on Riemannian manifold and construct a coupling 
method between the eikonal solver and the ground motion simulation. 
 In discussion with our coupling method, a concept of the isochrones is effective. [3][4][5] The isochrones 
formula plays an important role in our research, but their derivation in a general setting seems to be not trivial. 
So we give a derivation of the isochrones formula. Moreover we introduce an isochrones jumping intensity in 
order to give theoretical discussions for pulse-like disturbance of ground velocity. Using the isochrones jumping 
intensity we extend the isochrones formula to obtain a new decomposed expression of it. Our decomposition of 
the isochrones formula for velocity waveform consists of two components, that is, a trend component and a 
disturbance component. Then it turns out that the disturbance component can be expressed by means of the 
isochrones jumping intensity. Using the disturbance component of the isochrones formula for velocity waveform, 
we can explain some correspondence between pulse-like disturbance of ground velocity and spatially 
discontinuous non-uniformity of rupture process. 

2. Methods 
2.1 Eikonal solver 

The eikonal equation on a Riemannian manifold was mentioned in such field as computer vision and 
image processing. [6][7][8] In the aim to target the rupture propagation on a curved surface fault, we derive the 
eikonal equation over a two dimensional Riemannian manifold. We recall some terminologies about two 
dimensional Riemannian manifold 𝑀 imbedded into the three dimensional Euclidean space 𝑅𝑅3. We let 𝜑:→
𝑀 ⊂ 𝑅𝑅3 be an inverse of local coordinates, where 𝐷 ⊂ 𝑅𝑅2 is an open set. Then 𝑔𝑔1 = 𝜕𝜑

𝜕ξ1
∈ 𝑅𝑅3 and 𝑔𝑔2 = 𝜕𝜑

𝜕ξ2
∈

𝑅𝑅3 are covariant base vectors and their standard inner product 𝑔𝑔𝑖𝑗 = �𝑔𝑔𝑖,𝑔𝑔𝑗� defines the Riemannian metric. We 
let a matrix 𝑔𝑔−1 = �𝑔𝑔𝑖𝑗� be the inverse matrix of 𝑔𝑔 = �𝑔𝑔𝑖𝑗�. Then 𝑔𝑔𝑖 = ∑ 𝑔𝑔𝑖𝑗𝑔𝑔𝑗𝑗  are contravariant base vectors 
and the gradient 𝛻𝑇𝑇 of the rupture delay time 𝑇𝑇 is defined as follows: 

𝛻𝑇𝑇 = �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉𝑖

𝑔𝑔𝑖 
𝑖

= ���𝑔𝑔𝑖𝑗
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉𝑖

𝑖

� 𝑔𝑔𝑗
𝑗

. (1) 

Therefore the eikonal equation on a Riemannian manifold is described by 
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𝑔𝑔11 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉1

�
2

+ 2𝑔𝑔12 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉1

� �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉2

� + 𝑔𝑔22 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉2

�
2

=
1

𝑣𝑣𝑟(𝜉𝜉)2      (𝜉𝜉 ∈ 𝐷), 

𝑇𝑇(𝜂) = 0     �𝜂 ∈ 𝜑−1(𝑅𝑅)�, 
(2) 

where 𝑅𝑅 ⊂ 𝑀 is a set of hypocenters. We may note that the metric 𝑔𝑔12 vanishes if the fault considered is flat and 
that Eq. (2) generalizes the standard eikonal equation. We apply the Fast Marching Method ([6][7]) in order to 
solve the eikonal equation Eq. (1). By a small modification of the upwind discretization for the usual eikonal 
equation [6], we can construct our upwind discretization for the eikonal equation on a Riemannian manifold. For 
any grid point (𝑚𝑚,𝑛𝑛), we let 𝛼𝛼 = min�𝑇𝑇𝑚−1,𝑛,𝑇𝑇𝑚+1,𝑛� and 𝛽𝛽 = min�𝑇𝑇𝑚,𝑛−1,𝑇𝑇𝑚,𝑛+1�. Then our discretization is 
as follows. (for only the case of 𝛼𝛼 < 𝛽𝛽) 

𝑔𝑔11 �
𝑇𝑇𝑚,𝑛 − 𝛼𝛼
𝛥𝜉𝜉1

�
2

+ 2𝑔𝑔12𝑠𝑚,𝑛𝑡𝑡𝑚,𝑛 �
𝑇𝑇𝑚,𝑛 − 𝛼𝛼
𝛥𝜉𝜉1

� �
𝑇𝑇𝑚,𝑛 − 𝛽𝛽
𝛥𝜉𝜉2

� + 𝑔𝑔22 �
𝑇𝑇𝑚,𝑛 − 𝛽𝛽
𝛥𝜉𝜉2

�
2

=
1

(𝑣𝑣𝑟)𝑚,𝑛
2      �𝛽𝛽 < 𝑇𝑇𝑚,𝑛�, 

𝑔𝑔11 �
𝑇𝑇𝑚,𝑛 − 𝛼𝛼
𝛥𝜉𝜉1

�
2

=
1

(𝑣𝑣𝑟)𝑚,𝑛
2       �𝛼𝛼 < 𝑇𝑇𝑚,𝑛 < 𝛽𝛽�, 

𝑠𝑚,𝑛 = �
+1   �𝑇𝑇𝑚−1,𝑛 ≤ 𝑇𝑇𝑚+1,𝑛�
−1   �𝑇𝑇𝑚−1,𝑛 > 𝑇𝑇𝑚+1,𝑛�

,    𝑡𝑡𝑚,𝑛 = �
+1   �𝑇𝑇𝑚,𝑛−1 ≤ 𝑇𝑇𝑚,𝑛+1�
−1   �𝑇𝑇𝑚,𝑛−1 > 𝑇𝑇𝑚,𝑛+1�

 

(3) 

It may be remarked that the Riemannian metric �𝑔𝑔𝑖𝑗�𝑚,𝑛
 at the grid point (𝑚𝑚,𝑛𝑛) can be calculated in such a way 

that  �𝑔𝑔𝑖𝑗�𝑚,𝑛
= ��𝜕𝜑

𝜕𝜉𝑖
�
𝑚,𝑛

, �𝜕𝜑
𝜕𝜉𝑗
�
𝑚,𝑛

� when the position vector 𝜑(𝜉𝜉) of the fault surface at every grid point in a 

local coordinate plane is given. 

 

2.2 Coupling method between ground motion simulation and eikonal solver 
We aim to reveal some relations between the rupture process of near-field earthquakes and the ground 

motions. So, a simple model which can deal with a body wave is preferable. In this paper, we concentrate our 
attention upon ground motions induced by a body wave in whole three dimensional elastic media. Then it is 
well-known that the representation theorem with the Green’s function leads us to the following: [9] 

𝑢𝑢𝑛(𝑥𝑥, 𝑡𝑡) = �𝑑𝑑𝑆𝑆(𝜉𝜉)� 𝑚𝑚𝑘𝑙(𝜉𝜉, 𝑠)
𝜕𝜕𝐺𝑛𝑘
𝜕𝜕𝜉𝜉𝑙

(𝑥𝑥, 𝑡𝑡 − 𝑠; 𝜉𝜉, 0)𝑑𝑑𝑠
+∞

−∞𝑆
, (4) 

where 𝑢𝑢𝑛(𝑥𝑥, 𝑡𝑡) is a displacement of an observation point 𝑥𝑥 at a time 𝑡𝑡, 𝑚𝑚𝑘𝑙(𝜉𝜉, 𝑠) is a seismic moment density 
tensor at a single source point 𝜉𝜉 and a time 𝑠 and 𝐺𝑛𝑘(𝑥𝑥, 𝑡𝑡; 𝜉𝜉, 𝑠) is the Green’s function for receiver (𝑥𝑥, 𝑡𝑡) and 
source (𝜉𝜉, 𝑠). Then, by substituting the explicit formula of the Green’s function for a double couple point source 
into Eq. (4), we have that 

𝑢𝑢𝑛(𝑥𝑥, 𝑡𝑡) 

=
1

4𝜋𝜋𝜋𝜋

⎩
⎪
⎨

⎪
⎧�

𝑅𝑅𝑛𝑁

𝑟𝑟4𝑆
𝑚𝑚𝐹𝐹�(𝑥𝑥, 𝑡𝑡, 𝜉𝜉)𝑑𝑑𝑆𝑆 + �

𝑅𝑅𝑛𝐼𝑃

𝛼𝛼2𝑟𝑟2
𝑚𝑚𝐹𝐹 �𝑡𝑡 −

𝑟𝑟
𝛼𝛼
−
𝑟𝑟′

𝑣𝑣𝑟
�𝑑𝑑𝑆𝑆

𝑆
+ �

𝑅𝑅𝑛𝐼𝑆

𝛽𝛽2𝑟𝑟2
𝑚𝑚𝐹𝐹 �𝑡𝑡 −

𝑟𝑟
𝛽𝛽
−
𝑟𝑟′

𝑣𝑣𝑟
� 𝑑𝑑𝑆𝑆

𝑆

+�
𝑅𝑅𝑛𝐹𝑃

𝛼𝛼3𝑟𝑟
𝑚𝑚�̇�𝐹 �𝑡𝑡 −

𝑟𝑟
𝛼𝛼
−
𝑟𝑟′

𝑣𝑣𝑟
� 𝑑𝑑𝑆𝑆

𝑆
+ �

𝑅𝑅𝑛𝐹𝑆

𝛽𝛽3𝑟𝑟
𝑚𝑚�̇�𝐹 �𝑡𝑡 −

𝑟𝑟
𝛽𝛽
−
𝑟𝑟′

𝑣𝑣𝑟
�𝑑𝑑𝑆𝑆

𝑆 ⎭
⎪
⎬

⎪
⎫

, (5) 

where 𝜋𝜋 is mass density, 𝑟𝑟′ = |𝜉𝜉 − 𝜉𝜉0| is distance between a hypocenter 𝜉𝜉0  and a fault surface point 𝜉𝜉 , 𝑟𝑟 =
|𝑥𝑥 − 𝜉𝜉| is distance between an observation point 𝑥𝑥 and a point 𝜉𝜉, 𝑚𝑚 is seismic moment density, 𝛼𝛼 is the velocity 
of the primary wave, 𝛽𝛽 is the velocity of the secondary wave, 𝑣𝑣𝑟 is the rupture propagation velocity and 𝑅𝑅𝑛∗  are 
radiation patterns. Moreover �̇�𝐹(𝑡𝑡) and 𝐹𝐹(𝑡𝑡) represent a slip velocity function and a slip displacement function 
respectively and we denote 𝐹𝐹�(𝑥𝑥, 𝑡𝑡, 𝜉𝜉) as the following function. 
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        𝐹𝐹�(𝑥𝑥, 𝑡𝑡, 𝜉𝜉) = � 𝑠𝐹𝐹 �𝑡𝑡 − 𝑠 −
𝑟𝑟′

𝑣𝑣𝑟
� 𝑑𝑑𝑠

𝑟
𝛽

𝑟
𝛼

 

                          =
𝑟𝑟
𝛼𝛼
𝐹𝐹𝐼𝐼 �𝑡𝑡 −

𝑟𝑟
𝛼𝛼
−
𝑟𝑟′

𝑣𝑣𝑟
� + 𝐹𝐹𝐼𝐼𝐼𝐼 �𝑡𝑡 −

𝑟𝑟
𝛼𝛼
−
𝑟𝑟′

𝑣𝑣𝑟
� −

𝑟𝑟
𝛽𝛽
𝐹𝐹𝐼𝐼 �𝑡𝑡 −

𝑟𝑟
𝛽𝛽
−
𝑟𝑟′

𝑣𝑣𝑟
� − 𝐹𝐹𝐼𝐼𝐼𝐼 �𝑡𝑡 −

𝑟𝑟
𝛽𝛽
−
𝑟𝑟′

𝑣𝑣𝑟
�, 

(6) 

where 𝐹𝐹𝐼𝐼(𝑡𝑡) = ∫ 𝐹𝐹(𝑎)𝑑𝑑𝑎𝑡
0  and 𝐹𝐹𝐼𝐼𝐼𝐼(𝑡𝑡) = ∫ 𝐹𝐹𝐼𝐼(𝑎)𝑑𝑑𝑎 = ∫ 𝑑𝑑𝑎 ∫ 𝐹𝐹(𝑏)𝑑𝑑𝑏𝑎

0
𝑡
0

𝑡
0  are indefinite integrals respectively. 

Now we divide the fault surface 𝑆𝑆 into a finite disjoint union 𝑆𝑆 = ⋃ 𝑆𝑆𝑛𝑛  of small meshes 𝑆𝑆𝑛 and chose points 
𝜉𝜉𝑛 ∈ 𝑆𝑆𝑛 in all meshes. We evaluate the right hand term in Eq. (5) at every mesh 𝑆𝑆𝑛 and sum them into Eq. (5) 
over the fault surface. In evaluation of Eq. (5) at every mesh 𝑆𝑆𝑛, we approximate it by the value of the integrand 
at a point 𝜉𝜉𝑛 ∈ 𝑆𝑆𝑛 and the area of 𝑆𝑆𝑛. 

Our purpose is to deal with the non-uniform rupture propagation velocity in ground motion simulations. 
So we couple the eikonal solver, which solves the eikonal equation to calculate the rupture delay time 𝑇𝑇(𝜉𝜉), with 
the ground motion simulation. That is, in Eq. (5), we may substitute the rupture delay time 𝑇𝑇(𝜉𝜉) for 𝑟

′

𝑣𝑟
. 

 
Fig.1 Coupling method between ground motion simulation and eikonal solver 

2.3 Isochrones formula 
In [3] a definition of the isochrones and a contour integral formula for ground motion displacement are 

given in a very simple setting. In their analysis of the stopping phase at a barrier, the isochrones theory is 
effectively used. In [4] and [5], the substantially same isochrones formulae are used for analysis of high-frequent 
ground motion. In [5] they rewrote the isochrones formula to derive a general expression for the spectral 
characteristics of supershear rupture. in [4] the isochrones formula for ground acceleration is investigated in 
detail. In our purpose, however, we need the isochrones formula for ground velocity and its disturbance 
component. So we give a mathematically rigorous derivation of the formula in more general settings. After that, 
we introduce an isochrones jumping intensity in order to give theoretical discussions for pulse-like disturbance 
of velocity waveform. Using the isochrones jumping intensity we extend the formula with mathematical rigor to 
obtain a new decomposed expression of the formula for velocity. 

 For a fixed observation point 𝑥𝑥 and a hypocenter 𝜉𝜉0, we let a delay time 𝜃(𝜉𝜉) to be 𝜃(𝜉𝜉) = 𝑟
𝛼

+ 𝑇𝑇(𝜉𝜉) or 

𝜃(𝜉𝜉) = 𝑟
𝛽

+ 𝑇𝑇(𝜉𝜉), where 𝑇𝑇(𝜉𝜉) is the rupture delay time. For instance 𝑇𝑇(𝜉𝜉) = 𝑟′

𝑣𝑟
 in the case of uniform rupture 

velocity 𝑣𝑣𝑟. Then Eq. (5) shows that the displacement is written by a finite summation of the following 
forms of function. 

 

𝑇𝑇(𝜉𝜉) 

𝑔𝑔11 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉1�

2

+ 2𝑔𝑔12 �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉1��

𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉2� + 𝑔𝑔22 �

𝜕𝜕𝑇𝑇
𝜕𝜕𝜉𝜉2�

2

=
1

𝑣𝑣𝑟𝑟(𝜉𝜉)2 

𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡) 

=
1

4𝜋𝜋𝜋𝜋

⎩
⎪
⎨

⎪
⎧�

𝑅𝑅𝑛𝑛𝑁𝑁

𝑟𝑟4
𝑆𝑆

𝑚𝑚𝐹𝐹�(𝑥𝑥, 𝑡𝑡, 𝜉𝜉)𝑑𝑑𝑆𝑆 + �
𝑅𝑅𝑛𝑛𝐼𝐼𝐼𝐼

𝛼𝛼2𝑟𝑟2 𝑚𝑚𝐹𝐹 �𝑡𝑡 −
𝑟𝑟
𝛼𝛼
− 𝑇𝑇(𝜉𝜉)�𝑑𝑑𝑆𝑆

𝑆𝑆
+ �

𝑅𝑅𝑛𝑛𝐼𝐼𝑆𝑆

𝛽𝛽2𝑟𝑟2 𝑚𝑚𝐹𝐹 �𝑡𝑡 −
𝑟𝑟
𝛽𝛽
− 𝑇𝑇(𝜉𝜉)�𝑑𝑑𝑆𝑆

𝑆𝑆

+�
𝑅𝑅𝑛𝑛𝐹𝐹𝐼𝐼

𝛼𝛼3𝑟𝑟
𝑚𝑚�̇�𝐹 �𝑡𝑡 −

𝑟𝑟
𝛼𝛼
− 𝑇𝑇(𝜉𝜉)�𝑑𝑑𝑆𝑆

𝑆𝑆
+ �

𝑅𝑅𝑛𝑛𝐹𝐹𝑆𝑆

𝛽𝛽3𝑟𝑟
𝑚𝑚�̇�𝐹 �𝑡𝑡 −

𝑟𝑟
𝛽𝛽
− 𝑇𝑇(𝜉𝜉)�𝑑𝑑𝑆𝑆

𝑆𝑆 ⎭
⎪
⎬

⎪
⎫

 

eikonal solver

ground motion 
simulation

travel time

Displacement
velocity
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𝑢𝑢(𝑡𝑡) = �𝑔𝑔(𝜉𝜉)𝑓�𝑡𝑡 − 𝜃(𝜉𝜉)�𝑑𝑑𝑆𝑆(𝜉𝜉)
𝑆

. (7) 

In fact, the far-field component of the secondary wave shows that 𝑔𝑔(𝜉𝜉) = 𝑅𝑛𝐹𝑆

𝛽3𝑟
 and 𝑓(𝑡𝑡) = �̇�𝐹(𝑡𝑡). Now we denote 

a contour curve 𝐶𝑡−𝜆 of the function 𝜃(𝜉𝜉) as 

𝐶𝑡−𝜆 = {𝜉𝜉 ∈ 𝑅𝑅2 ;𝜃(𝜉𝜉) = 𝑡𝑡 − 𝜆} (8) 
In what follows, we call this contour curve 𝐶𝑡−𝜆 as the isochrones of the delay function 𝜃. If the isochrones 𝐶𝑡−𝜆 
are represented by a parameter description such as 𝜉𝜉 = 𝜑𝑡−𝜆(𝜆′) , local coordinates transformation 𝑅𝑅2 ∋
(𝜆′,𝜆) ↦ (𝜉𝜉1, 𝜉𝜉2) ∈ 𝑅𝑅2 can be defined. 

    
Fig 2. Local coordinates of isochrones (left) and isochrones band (right) 

 
Actually we can restrict the range of (𝜆′,𝜆) into the rectangular region [0,1] × [𝜆1,𝜆2] and cover the fault 
surface by a finite union of the images of such local coordinates. The interval [λ1, λ2] is a support of the function 
𝑓(𝜆) and the imege of such local coordinates means a region between two isochrones 𝐶𝑡−𝜆1 and 𝐶𝑡−𝜆2. We call 
this region 𝐷𝜆1,𝜆2(𝑡𝑡) as the isochrones band in this paper. It should be remarked that the Jacobian of the local 
coordinates transformation is as follows: 

�det
𝜕𝜕(𝜉𝜉1, 𝜉𝜉2)
𝜕𝜕(𝜆′,𝜆) � = �𝛻𝜃 �𝜑𝑡−𝜆(𝜆′)��

−1
�
𝑑𝑑𝜑𝑡−𝜆

𝑑𝑑𝜆′
�. (9) 

That is to say, the surface element 𝑑𝑑𝑆𝑆 = 𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2 can be decomposed into the arc length 𝑑𝑑𝐶𝑡−𝜆 = �𝑑𝜑
𝑡−𝜆

𝑑𝜆′
� 𝑑𝑑𝜆′ of 

the isochrones and its normal directional length 𝑑𝑑𝑛𝑛 = �𝛻𝜃 �𝜑𝑡−𝜆(𝜆′)��
−1
𝑑𝑑𝜆 as follows: 

𝑑𝑑𝑆𝑆 = 𝑑𝑑𝑛𝑛 𝑑𝑑𝐶𝑡−𝜆.  (10) 

Then, substituting Eq. (10) into Eq. (7), we may assume that the displacement is written by a finite summation of 
the following forms. 

𝑢𝑢(𝑡𝑡) = � 𝑓(𝜆)𝑑𝑑𝜆� 𝑔𝑔 �𝜑𝑡−𝜆(𝜆′)�
1

0

𝜆2

𝜆1
�𝛻𝜃 �𝜑𝑡−𝜆(𝜆′)��

−1
�
𝑑𝑑𝜑𝑡−𝜆

𝑑𝑑𝜆′
� 𝑑𝑑𝜆′. (11) 

For simplicity, we write ℎ𝜆′(𝑡𝑡) = 𝑔𝑔�𝜑𝑡(𝜆′)��𝛻𝜃�𝜑𝑡(𝜆′)��−1 �𝑑𝜑
𝑡

𝑑𝜆′
� in order to get 

𝜆′-curve is a contour curve of the delay function 𝜃 and 𝜆-curve is perpendicular to the 𝜆′-curve. Such 
coordinates can be defined locally and these local coordinate patches can cover the fault plane.  
Isochrones band is a region surrounded by two isochrones 𝐶𝑡−𝜆1  and Ct−λ2. Its width is proportional 
to |𝛻𝜃|−1𝑑𝑑𝜆. 
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𝑢𝑢(𝑡𝑡) = � 𝑓 ∗ ℎ𝜆′(𝑡𝑡)𝑑𝑑𝜆′
1

0
, (12) 

where 𝑓 ∗ ℎ𝜆′(𝑡𝑡) = ∫ 𝑓(𝜆)ℎ𝜆′(𝑡𝑡 − 𝜆)𝑑𝑑𝜆𝜆2
𝜆1

 is a convolution of 𝑓 and ℎ𝜆′. In the case of non-uniform 
discontinuous rupture velocity, it should be noted that ℎ𝜆′(𝑡𝑡) is discontinuout with regard to 𝑡𝑡 for every fixed 𝜆′. 
In fact �𝛻𝜃�𝜑𝑡(𝜆′)�� is discontinuous when a point 𝜉𝜉 = 𝜑𝑡(𝜆′) of the isochrones runs across the boundary on 
which rupture velocity varies discontinuously. We suppose that ℎ𝜆′(𝑡𝑡) jumps discontinuously at 𝑡𝑡 = 𝜏(𝜆′). Then 
we define the isochrones jumping intensity 𝑗ℎ(𝜆′) as follows: 

𝑗ℎ(𝜆′) = ℎ𝜆′(𝜏(𝜆′) + 0) − ℎ𝜆′(𝜏(𝜆′)− 0). (13) 

An easy calculation with Schwartz distribution theory leads us to that 
𝑑𝑑
𝑑𝑑𝑡𝑡

(𝑓 ∗ ℎ𝜆′) = 𝑓 ∗
𝑑𝑑ℎ𝜆′
𝑑𝑑𝑡𝑡

+ 𝑗ℎ(𝜆′)𝑓�𝑡𝑡 − 𝜏(𝜆′)�, (14) 

where 𝑑ℎ𝜆′
𝑑𝑡

 stands for a classical derivative of ℎ𝜆′ defined except for discontinuous points. Therefore we obtain a 
new decomposed expression of the following isochrones formula: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

(𝑡𝑡) = � 𝑓 ∗
𝑑𝑑ℎ𝜆′
𝑑𝑑𝑡𝑡

1

0
(𝑡𝑡)𝑑𝑑𝜆′ + � 𝑗ℎ(𝜆′)𝑓�𝑡𝑡 − 𝜏(𝜆′)�𝑑𝑑𝜆′

1

0
. (15) 

The first term of the right hand side in Eq. (15) stands for a trend component of the ground motion velocity and 
the second term stands for a disturbance component. From this formula Eq. (15) it turns out that a disturbance of 
the ground motion velocity occurs when a point 𝜉𝜉 = 𝜑𝑡(𝜆′) of the isochrones runs across the boundary on which 
rupture velocity varies discontinuously. In other words, a pulse-like disturbance of the ground velocity occurs 
when the isochrones jumping intensity 𝑗ℎ(𝜆′) has nonzero value. 

3. Simulations 
3.1 Directivity and numerical instability 
 First of all we investigate some properties of our ground motion simulation. Empirically it is known that 
ground motion simulation may often cause non-physical high frequent oscillations in the velocity waveform in 
the backward directivity regions. In this paper we refer to the non-physical high frequent oscillation as a 
numerical instability. We found that a simple example gives numerical instability of velocity waveform of 
ground motion of an observation point located in the backward directivity. The fault width and length are 20km 
and 40km respectively and the dip angle is 90 degree. Its depth of the upper edge is on the ground. The 
hypocenter is located on the lower corner and the rupture velocity is constant and uniform. Two observation 
points are located away 1km from the fault. 

 
Fig 3. Fault model (left) and time histories of Y-displacement (right) 
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The observation point B is located on the backward directivity and another point F on the forward directivity. 
We set mesh size as 400m. There are almost no numerical instabilities on the observation point F. On the other 
hand, the results of the observation point B show non-physical high frequent oscillation in the total component 
and the far-field component. The isochrones formula Eq. (11) shows that the isochrones band is dominant for 
ground motion estimation. Especially the width of the isochrones band is proportional to �𝛻𝜃�𝜑𝑡(𝜆′)��−1. Fig 4 
shows that the isochrones band width of the backward directivity is less than that of the forward directivity 
because the norm of 𝛻𝜃 of the backward directivity is greater than that of the forward directivity. From these 
results we found that numerical instabilities are caused when the mesh size is larger than the isochrones band 
width. Actually we can avoid the numerical instabilities from the backward directivity case by using the fine 
mesh which is smaller than one third of the isochrones band width. 

 
Fig 4. Shapes of the isochrones band 

 
3.2 Ground motion simulations with non-uniform rupture velocity 
 Next we show some parametric studies of the ground motion simulation with non-uniform rupture 
velocity. We consider the M7 class earthquake to set some fault parameters by following the recipe [10]. The 
fault width and length are 20km and 20km respectively. The asperity region is a square with length of 8km. We 
let the rupture velocity of the asperity region and the background region to be 0.72𝛽𝛽 and that of the margin 
region to be 0.30𝛽𝛽. (𝛽𝛽 is the secondary wave velocity) Then our eikonal solver gives rupture delay times for the 
fault model.  

Red : isochrones band of the forward directivity at 15.0[s] 
Green : isochrones band of the forward directivity at 17.5[s] 
Blue : isochrones band of the forward directivity at 20.0[s] 
Pink : isochrones band of the backward directivity at 15.0[s] 
Cian : isochrones band of the backward directivity at 17.5[s] 
Brown: isochrones band of the backward directivity at 20.0[s] 

 

Left figure shows that two observation points are located on the plane which includes the upper edge 
of the fault and is perpendicular to it. It should be remarked that the only body wave in whole three 
dimensional elastic media is considered. Right figure shows that numerical instabilities occur on the 
backward directivity. 
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Fig 5. Asperity and hypocenter in a fault model (left and center) and rupture delay time (right) 

 
In what follows, some results of the point A are given. The point A means a typical position of the backward 
directivity. First we investigate time histories of ground velocity of the backward ditectivity point. Compared 
with cases of the uniform rupture velocity and the non-uniform rupture velocity, it turns out that more pulse-like 
disturbance of velocity waveform of ground motion appears in the case of the non-uniform rupture velocity. In 
order to discuss somre relations between the pulse-like disturbance of ground motion and isochrones band, we 
investigate time histories of the rate of change of isochrones band area. Fig 7 shows that the rate of change of the 
isochrones band area in the case of non-uniform rupture velocity has more pulse-like disturbance. Fig 8 shows 
that the isochrones band is deformed when it crosses the boundary on which the rupture velocity varies. We will 
discuss these pulse-like disturbance in the section 4. 

 
                                              uniform case                                       non-uniform case 

Fig 6. Time histories of ground motion velocity at the backward directivity point 

 
                                              uniform case                                       non-uniform case 

Fig 7. Time histories of rate of change of isochrones band area at the backward directivity 

h1

h4

D

10km

A C

fault

An asperity region is marked by pink color and a background region is marked by white color. Star 
symbol stands for positions of hypocenter. Three observation points are located on the plane which 
includes the upper edge of the fault and is perpendicular to it. 
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Fig 8. Isochrones bands every one second w.r.t. the backward directivity point 

4. Discussions 
 As shown in the section 3.2, the pulse-like disturbance of ground motion velocity corresponds to that of 
rate of change of isochrones band area. Especially the timing of disturbance of ground motion velocity coincides 
with that of rate of change of isochrones band area. In the figure below we marked up the timing of disturbance 
of the graphs in Fig 6 and Fig 7 to compare with each others. 

 

 
                                        ground velocity                        rate of change of isochrones band area 

Fig 9. Zoom up of Fig 6 and Fig 7 : Comparison of ground velocity and  

rate of change of isochrones band area 
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Now we explain this coincidence of the timing for disturbances of velocity waveform of ground motion and rate 
of change of isochrones band area. Using the isochrones jumping intensity and the decomposed isochrones 
formula Eq. (15), we can distinguish the disturbance component 𝑉𝑑𝑖𝑠 of velocity waveform of ground motion. 

𝑉𝑑𝑖𝑠(𝑡𝑡) = � 𝑗ℎ(𝜆′)𝑓�𝑡𝑡 − 𝜏(𝜆′)�𝑑𝑑𝜆′,
1

0
 

ℎ𝜆′(𝑡𝑡) = 𝑔𝑔�𝜑𝑡(𝜆′)��𝛻𝜃�𝜑𝑡(𝜆′)��
−1
�
𝑑𝑑𝜑𝑡

𝑑𝑑𝜆′
�, 

(16) 

where the integrand 𝑗ℎ(𝜆′) = ℎ𝜆′(𝜏 + 0) − ℎ𝜆′(𝜏 − 0) is the isochrones jumping intensity and 𝑓(𝑡𝑡)  is a slip 
velocity function �̇�𝐹(𝑡𝑡) . The same argument derives the disturbance component 𝐴𝑑𝑖𝑠  of rate of change of 
isochrones band area. 

𝐴𝑑𝑖𝑠(𝑡𝑡) = � 𝑗𝐻(𝜆′)𝑓�𝑡𝑡 − 𝜏(𝜆′)�𝑑𝑑𝜆′,
1

0
 

𝐻𝜆′(𝑡𝑡) = �𝛻𝜃�𝜑𝑡(𝜆′)��
−1
�
𝑑𝑑𝜑𝑡

𝑑𝑑𝜆′
�, 

(17) 

where the integrand 𝑗𝐻(𝜆′) = 𝐻𝜆′(𝜏 + 0) −𝐻𝜆′(𝜏 − 0) is a modified isochrones jumping intensity with 𝑔𝑔(𝜉𝜉) ≡
1. These expressions of 𝑉𝑑𝑖𝑠 and 𝐴𝑑𝑖𝑠 means that the disturbance of them occurs at the same timing 𝑡𝑡 = 𝜏(𝜆′). 
That is to say, it occurs when the isochrones jumping intensity has nonzero value. 

5. Conclusion 
 For the purpose of evaluating variability of ground motion prediction, we had three achievements for a 
ground motion simulation. First, in order to deal with a curved surface fault with spatially discontinuous non-
uniform rupture propagation velocity, we proposed a kinematic modelling in which the rupture delay time is 
governed by the eikonal equation on Riemannian manifold and developed a coupling method between the 
eikonal solver on Riemannian manifold and a ground motion simulation. Next, in order to explain the effect of 
spatially discontinuous non-uniformity of rupture velocity, we introduced an isochrones jumping intensity and 
obtained a new decomposed isochrones formula for ground velocity. Finally, by applying our coupling method 
and decomposed isochrones formula we explained that the pulse-like disturbance of the ground velocity occurs 
when the isochrones jumping intensity has nonzero value. Moreover we showed a characteristic dependency of 
peak ground velocity upon parameters such as rupture velocity and distance between the fault and obsever. 

 We, however, think that further discussion with respect to the decision of rupture velocity is required. So 
we would like to study the dynamic rupture model in order to understand how to give the spatial distribution of 
rupture velocity in future works. 
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