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Abstract 
This paper presents an earthquake damage and repair cost prediction framework for individual residential buildings and 
portfolios of residential buildings in a municipal area in a region where the seismological networks are sparse and the 
structural engineering data on the existing residential building stock is poor.  

The proposed data driven framework is based on the damage and reconstruction data from an actual earthquake, in this case, 
the M5.4 November 3, 2010 Kraljevo, Serbia, earthquake. It belongs to a more general class of hybrid building portfolio 
vulnerability models. The earthquake in the model is defined by its magnitude and epicenter location. The geographical 
distribution of the intensity of the earthquake at the location of the buildings is modeled using the 2013 Akkar-Sandikkaya-
Bommer ground motion prediction model suitable for seismically active crustal regions in Europe, with the peak ground 
acceleration as the intensity measure. The data on the soil type distribution was collected form the municipality building 
department sources. The residential building stock was classified into six types by identifying typical architecture layouts, 
structural systems and elements. The residential building damage was surveyed after the 2010 Kraljevo earthquake by local 
engineers using a locally-developed survey form. The form contained the information about the individual damage, 
classified into four categories ranging from slight damage to collapse, varying amount of building-specific details, and 
addresses from which geographic locations of the buildings were derived.  

A random forest machine-learning algorithm was used to derive a predictive model for residential building portfolio seismic 
damage and repair cost using a portion of the 2010 Kraljevo data as the learning dataset. The model outputs both the 
individual building fragility and the aggregate portfolio-level vulnerability data. The calculation of the expected repair cost 
for each building type was done using an expert-defined matrix that specifies average repair costs for each building type and 
damage category. The model is verified on a separate test portion of the 2010 Kraljevo dataset, yielding a satisfactory 
relative error when comparing total predicted to total actual repair costs.  

The model is limited to regions with similar seismicity and similar building stock. However, there many regions in the 
Balkans that fit this constraint. The proposed framework is, however, more general. It can be applied to other regions with 
different seismicity and building stock using the data from a recent earthquake as its learning input dataset and an expert-
defined repair cost matrix for analyzing the repair cost scenarios.  
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1. Introduction 
Earthquake damage prediction has been in the focus of research for many years. The main problems for 
researchers on the structural engineering side, and the main reasons that the research is still ongoing, are: the 
lack of sufficiently good field data, and the diversity of the building stock. Different approaches to evaluate the 
earthquake-induced damage are analytical, empirical and hybrid [1]. There are other classifications 
(direct/indirect/conventional/hybrid, first/second/third level) but the logic is similar. 

These approaches have their advantages and disadvantages. Analytical methods are capacity spectrum 
based, collapse mechanism based, or fully displacement based. The strength of these methods is the provable and 
quantifiable accuracy of damage prediction for a given, well-defined, type of building. The weak side is that real 
building stock is diverse and cannot be easily classified and separately investigated. As-built buildings often 
differ from the design documents, and their capacity diminishes due to aging or poor maintenance, making it 
more difficult to use the analytical methods. More important, it is hard to verify and validate the analytical 
models against real earthquake damage data. Thus, it is difficult to apply the analytical approach to numerous 
and diverse building stock at the municipal or regional level. Empirical approaches are based on classifying 
buildings into classes depending on materials, construction methods, structural elements and other factors 
influencing their seismic behavior. The evaluation of damage state probabilities for each building class is based 
on observed damage after previous earthquakes, and the outcomes are presented in terms of damage probability 
matrices or in terms of continuous fragility curves (conditional probability of exceeding a damage state, given 
the ground motion intensity) fitted to the data [1]. The weak side of this approach is the subjectivity in 
classifying buildings and in assigning building damage states, done typically during quick post-earthquake 
surveys, as well as accurate estimation of the local ground motion intensity. Furthermore, there is a very small 
number of examples where earthquake damage and repair cost data has been collected from a number of 
buildings large enough to allow the development of reliable building vulnerability statistics. 

The proposed earthquake damage and repair cost prediction framework belongs to a more general class of 
hybrid building portfolio vulnerability models. The framework is intended for individual residential buildings 
and portfolios of residential buildings in a municipal area in a region where the seismological networks are 
sparse and the structural engineering data on the existing residential building stock is poor. The hybrid approach 
is implemented using the building damage data collected from the building damage surveys made after the M5.4 
2010 Kraljevo, Serbia combined with estimates of ground motion intensity, classification of the building stock, 
and estimates of repair cost obtained from the scientific literature or by consulting the experts. A machine 
learning technique is used to process the available Kraljevo earthquake data in order to build a damage 
prediction model using ground motion intensity at building location and descriptive building attributes as its 
inputs. The model outputs a damage state probability distribution for each building and, by utilizing expert-
defined cost matrix, allows for repair cost estimates specific to the residential housing inventory found in the city 
of Kraljevo. The framework is verified using standard machine learning procedures and validated using fragility 
curves. While the trained model is specific to the particular building stock, the proposed data driven approach 
makes it possible to investigate what-if scenarios involving different earthquake intensities, different building 
stock composition, and different construction cost environments.  

2. Background 
The proposed framework utilizes three types of inputs, the ground motion intensity estimates, the building 
typology, and the estimates of repair cost, obtained from scientific literature or by consulting the experts.  

The seismic hazard environment of Serbia has recently been characterized within the EU SHARE project 
(http://www.share-eu.org) and has been studied by reinsurance companies [2]. The seismotectonic characteristics 
of the M5.4 2010 Kraljevo earthquake have also been investigated [3]. Based on these findings, a GMPE 
developed by Akkar, Sandikkaya and Bommer [4] using the pan-European ground motion databases and 
intended for crustal earthquake scenarios in Europe and Middle East was selected for this study to provide the 
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ground motion intensity estimates at individual building locations. The peak ground acceleration (PGA) intensity 
measure was used in this study. 

A review of the building typology used in by the Global Earthquake Model, the GEM Building Taxonomy 
v2.0 [5], based on the NERA European Building Classification [6] derived from the analyses of the building 
stock in typical European cities has been conducted first. Using the data from 2010 Kraljevo post-earthquake 
damage surveys and observations from visits to the affected region, six types of building structures were 
identified. They correspond roughly to GEM MUR+ADO/LWAl (adobe), GEM MUR+CL99 (brick masonry 
with a variety of floors), GEM RM+CL99+RCB/LWAL (reinforced masonry with RC bands), and GEM 
CR/LFINF (reinforced concrete infilled frame) building classes, but an exact match could not be made. Given 
that the six custom classes identified in Kraljevo are representative of the building stock in Serbia and in the 
broader region of West Balkans, they were adopted in this study. Similarly, a four-state damage classification 
developed for the post-earthquake survey was derived from the post-earthquake survey forms used after the 2010 
event and customized to the six custom building types, and follows the general principle of dividing the damage 
range from slight damage to collapse into categories associated with life safety and reparability.  

The estimates of repair costs for each of the six building types and each damage state identified in the 
post-earthquake damage surveys were done by the authors based on their knowledge of local construction 
practices, labor and material costs, market fluctuations, and typical repair methods. This approach is similar to 
the one used to estimate the repair time and cost for seismic damage of typical California overpass bridges [7]. 

Research on damage prediction and loss estimation of municipal-level building stock is very diverse and 
includes: block-by-block based damage and loss distributions in Canada [8]; investigating the capabilities and 
efficiency of the seismic risk and loss assessment tool in Italy [9]; probabilistic assessment of structural damage 
in mid-America [10]; procedure for the seismic performance assessment of low to mid-rise RC buildings in 
Turkey [11], discussion of methods of predicting earthquake damage to urban systems based on the earthquake 
damage in Japan [12]; analyzing the seismic risk of the buildings in Spain, by using a method based on the 
capacity spectrum [13]; using statistical data to derive damage matrices in Greece [14]; comparing two main 
regional damage estimation methodologies in Turkey [15]; examining the losses of building and infrastructure 
materials after an earthquake and tsunami in Japan [16]; proposing a system for estimating earthquake damage in 
the early post-disaster period in Turkey [17], and many more. A broad array of machine-learning and data 
classification methods have also been deployed: artificial neural networks [18]; fuzzy logic [19]; fuzzy sets [20]; 
expert systems [21]; and others. Machine learning has been used in the scope of probabilistic seismic hazard 
analysis [22] and earthquake damage classification [23] only recently. The data-driven housing damage and 
repair cost prediction framework presented in this paper is unique in using actual post-earthquake damage data 
instead of simulations to form the training and verification datasets.  

3. Damage and Repair Cost Prediction Framework  
The proposed damage and repair cost prediction framework is divided into the damage prediction and the repair 
cost prediction modules. The damage prediction module (Figure 1) utilizes four databases. The first database 
contains the actual earthquake magnitude and epicenter location, as well as other data needed to utilize the 
selected GMPEs. The second database contains the soil type distribution in the observed region, including geo-
location information. The third database contains the building stock data. Standard parameters for a building 
(element of the building stock) are: geo-location, year of construction, gross area, the number of floors, and 
footprint area (FA, equal to the gross area divided by the number of floors). The building type information is 
added later, as described below. Finally, the fourth database contains the data on the actual damage state (DS) of 
buildings derived from post-earthquake damage survey forms, including the location information. The damage 
states are classified into four categories according to the percentage-based locally-developed damage scale used 
to conduct the post-damage survey. Therefore, damage state classification is, despite the best efforts of the post-
earthquake surveyors, somewhat subjective.  

The layer below the databases in Figure 1 indicates the role of the experts in preparing the inputs for the 
machine learning engine from available data. Use of expert knowledge about the regional design practices and 
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the outcomes of detailed post-earthquake investigations of some buildings is needed to define the building type 
(BT). The building type represents the knowledge about the seismic behavior of the structure. The discrepancies 
between the actual building type and the building type that can be established on the basis of design documents 
and quick post-earthquake walk-by or drive-by surveys are often quite significant. For example, construction of 
one or two floors on top of existing buildings was common in the Kraljevo region during the 1990’s. Such 
additions substantially alter the seismic behavior of the building and end up govern the resulting damage state, 
thus effectively changing the building type. Another aspect of expert knowledge is the use of GMPEs to evaluate 
the ground motion intensity at the locations of the buildings to compensate for the relatively sparse seismic 
instrumentation in the region. In addition, the experts can identify and correct the errors made during the post-
earthquake survey (e.g. corrections in building geo-location, identification of the soil type), and possibly provide 
some data that may be missing in the survey. Finally, an expert analysis of the damage repair cost (for each DS 
of each BT) is performed at this stage and added to the dataset as an expert repair cost matrix. This data is used 
in the model verification and validation procedure described below.  

 

Databases 
BUILDING STOCK SOIL TYPES EARTHQUAKE  DAMAGE  

Input data set  
(for every individual 
 building) 

GMPE PGA at 
Location 

Location, Year, Gross 
area, Nr. of floors 

Building types Damage state 

Earthquake 
analysis Soil type 

Epicentre, 
Magnitude 

Building 
stock analysis 

Superstructure elements, 
layouts, classification 

Damage repair 
cost analysis 

Machine 
learning 

 

OUTPUT - Damage state probability distribution  
(for every individual building) 

HARD VERIFICATION - 
Confusion matrix 
(precision, recall, 

accuracy) 

Expert repair 
cost matrix 
($/footprint for 
all DS and BT) 

SOFT VERIFICATION - 
Relative error 

(predicted vs. actual 
repair costs) 

VALIDATION - 
Fragility curves 
(conformation, 

explanation) 
 

Fig. 1 – Damage prediction module of the proposed framework 

The final input dataset for machine learning contains the following attributes about each building in the 
database: ground motion intensity (PGA in this study), building type, footprint area, building construction year, 
and the observed building damage state. The amount of features per building is relatively small and fairly easy to 
obtain from post-earthquake damage surveys. To achieve better prediction accuracy, the input dataset can be 
improved by including more data from GMPEs (e.g. the response spectrum information), refining the building 
description (e.g. predicting the fundamental vibration period of the structure to include more information about 
the building dynamic response), and refining the damage state classification. This effort/size/accuracy tradeoff is 
currently being investigated.  

The central part of the damage prediction module is the machine learning algorithm and its output 
verification and validation procedure. The objective of the machine learning process is to establish the relation 
between the input building attributes and the target attribute – damage state. Thus, the obtained machine-learned 
relation can be used, given the input data on the ground motion intensity and building typology, to predict the 
earthquake damage probability distribution in the municipal building stock.  

4 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

The open-source Weka tool [24] was used to perform the machine learning task. Among several possible 
machine learning algorithms, the Random Forest algorithm [25] was used in this study. This classification 
algorithm belongs to ensemble-based classifiers. The idea behind ensemble based methods is that a group of 
“weak learners”, such as Decision Trees [26] used in a Random Forest, can be combined together to form a 
“strong” one. The applied combination of decision trees assumes voting between their individual decisions in 
order to form the output of the forest. However, each tree in the forest is trained on a different, possibly 
overlapping, portion of a training set. In addition, a random subset of input attributes is chosen at every node 
when growing each tree in the forest. Such training approach avoids overfitting the data, thus yielding more 
general predictive models. Apart from this generalization property, Random Forests were chosen in the 
framework because they can process very large input sets with many input attributes, and can handle missing 
values well.     

To enable verification of the learning process, the input dataset is divided into the training dataset (roughly 
50% of the buildings, used to “learn” the relation between the input and the output attributes) and a separate test 
dataset (the remaining data, used to assess the quality of the “learned” relation). This information is crucial to 
evaluate if the obtained model can be used to correctly predict the output for new input datasets, i.e. if the 
proposed framework can be used to predict the damage and repair cost of the municipal building stock in other 
earthquake scenarios. The sampling procedure is performed such that both the training and the test datasets 
credibly represent the survey earthquake outcome in terms of the distributions of the ground motion intensity, 
soil types, and building typology in the affected region. Verification of the prediction ability and the quality of 
the predictions consists of two procedures: hard and soft verification.  

Hard verification: This is a test of the damage state classification accuracy for each building type. A 
confusion matrix Dnxn for n different damage states is formed by counting the number of correct and incorrect 
predictions for buildings from the test dataset. Each element dik in the confusion matrix represents the number of 
buildings with actual damage state i predicted as being in damage state k. The model performance is assessed  
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damage state and building type. Since the Random Forrest algorithm outputs a damage state probability 
distribution for each building, hard verification assumes that the final predicted class is the most probable one.     

Soft verification: This is a test of the aggregate repair cost prediction accuracy for each building type. An 
expert repair cost matrix is needed to compare the total actual and the total predicted repair costs for each 
building type, summed up over the dataset. The damage state probability distribution is expressed by probability 
pi of a building being in a damage state DSi derived from the Random Forrest algorithm output. The repair cost 
matrix specifies the repair cost per footprint area (€/m2) cij for BTj in DSi. Let n be the number of damage states, 
m be the number of building types, and K(j) be the number of buildings of BTj. Total predicted repair cost (PRC) 
is the sum of repair costs multiplied by respective damage state probabilities and footprint areas for all buildings: 
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The total actual repair cost (ARC) is the sum of repair costs for the actual damage state. Equation (1) can 
be used to compute ARC with pi=1 for the actual state and pi=0 for other damage states. The final result of soft 
verification is the relative error between PRC and ARC defined as (PRC-ARC)/ARC.  

The validation procedure consists of plotting and analyzing the seismic fragility curves for different 
building types, constructed from the predicted values the machine learning algorithm provides for the test 
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dataset. The aim is to confirm that the fragility curves have the expected shape and values for certain known 
building types and seismic regions and to explain the potential deviations in a scientific manner. 

The repair cost prediction module of the proposed framework is shown in Figure 2. The expert repair cost 
matrix and the custom repair cost matrix are the principal inputs to this module. Both matrices contain repair 
costs per footprint area (€/m2) cij for BTj in DSi. The main problem with establishing the repair costs is the 
qualitative definition of damage states used in the post-earthquake damage survey and the inevitable subjectivity 
of each surveyor. For example, the terms used in damage state definitions, such as “significant portion of the 
roof surface” or “extensive damage to the pillars - numerous cracks”, could be interpreted in different ways in 
terms, yielding very different repair work estimates. Furthermore, certain repair work item quantities and 
durations can vary significantly from one building to another even if the buildings are of the same type, 
particularly for the non-structural building components. As a consequence, cost of repairing a building in a lower 
damage state may exceed the repair costs for building in a higher damage.  
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f(PGA, building atributes) 

 
 

 
Fig. 2 – Repair cost prediction module of the proposed framework 

The repair costs can be determined by statistical analysis of the past cases, or by conducting an analysis of 
the likely repair methods and deriving cost and time estimates using standard construction work cost data. The 
statistical approach is recommended for lower damage states (e.g. slight, lite) because of the mostly random 
nature of repair work quantities for these damage states. For higher damage states (e.g. heavy, severe) the 
statistical approach is applicable, but an analysis of the repair methods is recommended, since significant cost 
differences can occur as described above. A construction management analysis of a repair method consists of 
determining the work items, estimating the manpower and material quantities, and calculating the unit prices. 
The most challenging part is in estimating the quantities. One way to approach this problem is to develop a set of 
typical damage and repair scenarios for a certain BT and DS combination, evaluate the manpower and material 
quantities and estimate their likely variation, and associate probabilities of occurrence with each scenario. Based 
on this data, “mean repair quantities” can be associated with each DS for each BT. Calculating unit prices should 
be done using the norms (typically annual construction labor and material standards) which determine the usage 
of materials and labor (assuming that the work items in question do not require any special construction 
equipment). Defining the unit cost separately for material and labor is important: this makes the proposed 
framework transferable to other regions and applicable through time as the costs of material and labor change 
over years. In both cases, costs should be estimated using the mean repair costs and the repair cost intervals 
provided in the norms.  

The state of the construction material and labor market changes dramatically after an earthquake: 
typically, the demand for materials and labor increases to satisfy the post-earthquake recovery construction 
needs. Thus, the costs of material and labor estimated for normal market conditions (assumed in the norms) need 
to be modified to match the increase in demand and the possible shortage in supply, as well as the budget 
constraints, municipality recovery strategies and priorities, financial and material aid dynamics, and aid agency 
requirements. The effect of these constraints is expressed by modifying the expert repair cost matrix (derived 
assuming normal market conditions) to derive a custom repair cost matrix, which is used in actual repair cost 
predictions. Special attention should be paid to the collapse damage state. The economic loss is 100% of the 
building cost but the actual compensation received by the owner(s) can vary significantly from case to case.  
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The repair cost prediction module can be used to explore the repair costs for different earthquake 
scenarios, and obtain the statistical predictions for the repair quantities and costs for individual buildings of 
interest or, more appropriately, for the municipality in aggregate. These scenarios use the building fragilities 
“learned” in the damage prediction module, and thus are representative of the building stock in the region 
affected by the actual earthquake used to generate the training dataset. However, different scenarios can be 
generated by varying the location of the epicenter and the magnitude of the earthquake for the same 
municipality, or by changing the building type quantities to adapt the model for a different municipality with the 
same building typology and a similar seismic hazard setting. Such “what-if” analyses, customized to the specific 
building stock typology and seismic hazard setting, can be used for future municipality-level post-earthquake 
recovery planning.  

4. Framework implementation 
The proposed framework was implemented using the data from the M5.4 2010 Kraljevo, Serbia, earthquake 
[27]. This earthquake resulted in only two fatalities and just over one hundred medically treated injuries, but 
almost 6,000 structures sustained damage, a quarter of which were found to be unsafe to occupy. The economy, 
education and public services of the city were affected significantly. The immediate recovery process was well 
organized and documented by the SEESAC [28] and local government [29]. The efforts of the local government 
resulted in a well-organized long-term housing reconstruction process, with the City of Kraljevo keeping track of 
the damage inspection reports, reconstruction funding, repair permit applications, and the resulting repair work 
outcomes in terms of the return of the inhabitants to their pre-disaster homesteads. 

A considerable effort was needed to establish a usable database of damaged buildings, since post-
earthquake survey and recovery data was not centralized, some of the information was not in electronic form, 
and the formats and the amount of available data varied significantly from one building to the other. This 
involved several site visits and repeated contacts with various local agencies. A database containing 649 
damaged buildings was used in this study, while the effort to clean up the acquired data and collect more data is 
still ongoing.   

Ground motion intensity model 

The geographic distribution of the ground motion intensity for the 2010 Kraljevo earthquake was estimated 
using the GMPE developed by Akkar, Sandikkaya and Bommer [4]. The data on the earthquake epicenter and 
magnitude was obtained from [3]. The data on the soil type distribution was collected form the municipality 
building department sources. Using Eurocode 8 soil classification, the soil types in the Kraljevo region are 
mostly B and C, with some locations having soil type A and some locations near the banks of Zapadna Morava 
and Ibar rivers having soil type E. 

Building stock model 

The residential building stock was classified into six types by identifying typical architecture layouts, 
structural systems and elements: 

BT1 – “Chatmara” buildings are the oldest residential houses in the region, with a wooden superstructure 
placed on stone foundation and walls made of interwoven hazel rods (chatma). They are typically single-story 
buildings. The roof was made of densely compacted straw. The foundations are made out of stone and clay 
mortar. The foundation depth depends on the soil type, and usually is around 80cm. Cellar walls are made of 
stone. The ground floor structure is made out of wooden beams. The space between beams is filled with mud and 
floor boards are put on top. The roof is typically covered with clay roof tiles. 

BT2 – Unreinforced masonry structures with old brick format were built until 1933, when the new code 
and format for bricks was introduced. These are typically single-story buildings. The foundations, depending on 
the soil type, are usually 80cm deep. The exterior walls are made of brick, usually 35-40cm thick. The interior 
walls are usually 15cm thick. All walls are plastered. The floor construction is similar to BT1, involving wood 
beams. The roof is made of wood beams and lathing, covered using clay roof tiles. 
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BT3 – Unreinforced masonry structures with new brick format were built after 1933, when the new code 
and format for bricks was introduced. These kinds of houses were built until the 1960’s, and may be one- or two-
story tall. BT3 is similar to BT2, only the type of bricks changed and the floor heights were reduced from about 
3.5m to about 2.7m. The attics were still not used as living spaces. The foundations are made of stone and are 
about 80cm deep, depending on the soil type. Exterior walls are 25cm or 38cm thick, depending on the number 
of floors. Interior walls are 12cm thick. The roofs are made using wood beams and lathing and are covered using 
clay tiles. There are no reinforced concrete elements in the superstructure. 

BT4 – Masonry structures with horizontal reinforced concrete ring beams were built during the 1960’s and 
1970’s. They are similar to BT3, with the main difference being the reinforced concrete horizontal ring beams 
placed at floor levels. Typically, these are one- and two-story structures, with the floor heights varying between 
2.4m and 2.7m. The attic floor is sometimes made of concrete elements, and is typically used as living space. 
The foundations are sometimes made of concrete. The foundation depths are the same, so is the wall thickness, 
roof, etc. 

BT5 - Masonry structures with horizontal and vertical reinforced concrete elements were built between 
1975 and 1990. These houses were built according to approved design and have licenses. BT5 houses were built 
with horizontal ring beams and vertical reinforced concrete columns, but the joints typically lack the detailing to 
allow the reinforced concrete elements to work as a moment-resisting frame under seismic loads. These are still 
mostly one-story houses. Buildings of this type with more than two stories are rare. The foundations are made of 
reinforced concrete with the same depths as in previous types. Exterior walls made of brick are 25cm thick. 
Interior brick walls are 12cm thick. In this period, the use hollow bricks instead of solid bricks came into 
practice. All walls are plastered. The minimum floor height is 2.6m. Basement walls are made of reinforced 
concrete, and so is the ground floor slab. The attic floor is made mostly semi-prefabricated TM block system, a 
ribbed reinforced concrete ceiling made of hollow-blocks which remain built in after concreting. The roof is 
made of wooden beams and lathing, covered with clay roof tiles. 

BT6 - Masonry structures with horizontal and vertical reinforced concrete elements built 1990 are similar 
to BT5 houses. The main difference is the floor construction, where the TM block system is replaced with the 
FERT system which uses hollow masonry elements. Exterior and interior walls are now made using hollow 
masonry, and the facades are plastered and more thermally insulated then before. 

Damage data 

The residential building damage after the 2010 Kraljevo earthquake was surveyed by local engineers using 
a locally-developed survey form. The form contained the information about the individual building damage, 
classified into six categories ranging from slight damage to collapse, denoted as 10%, 20%, 30%, 50%, 70% and 
100%, varying amount of building-specific details, and addresses from which the geographic locations of the 
buildings were derived. The damage scale used in the 2010 Kraljevo earthquake survey resembles other damage 
scales that can be found in literature, but was re-classified into four damage states for this study. The first two 
damage states (10% and 20%) were merged into DS1 because of their similarity to reduce subjectivity. Damage 
state DS2 was assigned to buildings assessed to have 30% damage. The 50% and 70% damage state categories 
were merged into DS3 due to an insufficient number of buildings in the dataset used in this study, but will be 
decomposed in further work once the database population is completed. Collapsed buildings (100% damage) 
were classified into DS4. The distribution of damage states for the six building types is shown in Figure 3.  

Repair cost matrix 

The repair cost analysis was conducted separately for different damage states. For DS1 and DS2, a statistical 
analysis was done to determine the repair cost per footprint area for different building types and damage states. 
The repair cost statistics (mean and interval values) showed huge variations, which confirms the random nature 
of the repair costs (as well as the subjectivity of damage assessment and large variations in repair methods and 
extent) for low damage states. The mean damage repair costs were calculated. For DS3 an expert analysis was 
conducted using several damage and repair scenarios for each building type. Since different design and 
contractor firms were engaged in the recovery process, it was inevitable that different repair methods were 
proposed and used. This lead to very different repair costs per footprint area, resulting in large cost intervals for 
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DS3 across all building types. For the purpose of this study, average costs for the most appropriate methods were 
calculated. In order to establish the replacement cost for the collapsed (DS4) structures, data collected after 
recent flood disasters in Serbia were analyzed. In most cases, the government provided prefabricated wooden 
frame houses as replacement for collapsed buildings. The value of this type of building is typically 350€/m2. 
The resulting repair cost matrix is presented in Table 1. This cost matrix will be used later on for machine 
learning accuracy verification and for repair cost predictions. 
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Fig. 3 – Distribution of damage states for building types 

Table 1 – Repair cost matrix (€/m2) 

 BT1 BT2 BT3 BT4 BT5 BT6 

DS1 3,43 12,04 8,36 10,43 9,14 9,14 

DS2 13,40 16,04 15,14 18,86 17,54 18,64 

DS3 55,69 46,30 44,15 38,87 29,72 32,75 

DS4 350,00 350,00 350,00 350,00 350,00 350,00 

 

Machine learning verification and validation 

In order to verify the proposed model, the collected and cleaned-up 649-building database was separated into the 
training and the testing dataset that, respectively, contained 324 and 325 buildings uniformly distributed over the 
input attributes. The Random Forest machine learning method was applied to the training set. The resulting 
model produced damage state probability distribution for each building from the testing set.  

The confusion matrix, used for hard verification, is shown in Table 2. Before commenting on these values, 
the confusion matrix is explained in more detail. A total of 39% of buildings were misclassified in terms of 
predicting the damage state: the correctly classified buildings are on the main diagonal. About half of the 
misclassified buildings are next to the main diagonal, particularly for DS1 and DS2. These mistakes are due, in 
part, to mistakes in survey field work, invisible or unidentified renovations, unrecognized pre-earthquake 
damage, poor quality of construction, or just building-specific conditions. For example, two almost identical 
houses on the same lot were in different damage states, most likely due to the proximity of a septic tank to the 
more damage one. The confusion matrix suggests that it was difficult for field teams to make a clear difference 
between DS1 and DS2 (i.e. 10%, 20% and 30% damage). Hence, the definition of lower damage states should be 
improved in future post-earthquake survey forms.  

The most interesting result is that a significant number of buildings were severely misclassified: 40 
buildings (12%) were predicted to be slightly damaged, and yet they collapsed or were heavily damaged. This 
outcome heavily influenced the overall prediction accuracy and the DS precisions and recalls for individual BTs. 
Since this was an unexpected result, these buildings were visited and investigated individually. It turned out that 
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many of these structures were built with serious flows, mostly missing or very poor foundations, and thus 
suffered serious water-induced soil-movement degradation. The buildings in question were typically in a state of 
semi-collapse even before the earthquake struck. 

Table 2 – Confusion matrix used for hard verification  
 
Actual  

Predicted  DS1 DS2 DS3 DS4 total: Recall 

DS1 119 9 9 6 143 0.83 
DS2 24 33 7 8 72 0.46 
DS3 20 3 22 7 52 0.42 

DS4 20 4 7 23 54 0.43 

total: 183 49 45 44 Accuracy 
197/321=0.61 Precision 0.65 0.67 0.49 0.52 

 

The hard verification process suggested that the Random Forest model has satisfactory accuracy and 
reflects the reality reasonably well. The accuracy would be better if the information about the actual pre-
earthquake condition of the buildings was available as an input attribute to the model. Soft verification was 
carried out according to equation (1) using the repair cost matrix from Table 1. The estimated repair cost was 
1.964.808€ and the actual repair cost, obtained from the City of Kraljevo construction administration data for 
these residential buildings, was 1.991.153€. The relative error is only 1,3%, which implies that the framework 
could be directly used for repair cost prediction for municipalities with similar building stock and similar seismic 
hazard exposure. This exceptionally good result can be partially explained by analyzing the confusion matrix. It 
is evident that misclassifications occur on both sides of the main diagonal, which means that repair cost are 
almost equally overestimated and underestimated such that these errors cancel each other out to some extent. 

For the purpose of validation, seismic damage fragility curves for BT3, BT4 and BT5 were computed by 
fitting a log-normal distribution to the data points predicted using the Random Forest model on the training 
dataset. Unfortunately, at this point in time the database of undamaged buildings is not complete. In order to 
compute the fragility data, it was assumed that the number of undamaged buildings (for each BT) was four times 
the number of damaged buildings in the training dataset (for each BT). The PGA values in the testing dataset 
vary between 0.2g and 0.4g. The fragility curves were fitted to this data, and then extrapolated and plotted in 
Figure 4 up to a PGA of 0.6g. The probability of being in DS1 is biggest and similar for all three building types, 
which could be expected for this PGA range. The biggest difference is in the probability of collapse (DS4) where 
it is clear that BT5 buildings, which have (almost) reinforced concrete frame masonry infill superstructures, are 
not likely to collapse, while unreinforced masonry BT3 and semi-reinforced masonry BT4 are more likely to 
collapse in this PGA range. BT3 buildings have a higher probability of being in DS2 and DS3 than other BTs, 
which is also logical, having in mind their superstructure and age. The selected building types represent the 
unreinforced and reinforced masonry structures typical for the region. These structures are comparable to the 
unreinforced masonry structures [30] and reinforced concrete frame structures [31] typical for Italy and Greece, 
but are not the same. Furthermore, the damage state classification is somewhat different. Nevertheless, the 
fragility data is comparable. Thus, the machine learning output can be considered as validated.  

5. Conclusion 
This paper presents an earthquake damage and repair cost prediction framework for individual residential 
buildings and portfolios of residential buildings in a municipal area in a region where the seismological networks 
are sparse and the structural engineering data on the existing residential building stock is poor. This framework 
is based on a post-earthquake survey data model coupled with the expert knowledge used pre-process the 
relevant information. The unknown relation between inputs (ground motion intensity and building typology and 
geometry) and the outputs (building damage state probability distribution) is discovered from the training data 
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using the Random Forest machine learning method. In order to ensure that the output is accurate and the model 
is usable for predictions, a hard and soft verification procedure is established, and a validation using fragility 
curve analysis is proposed. The framework was used to model the outcomes of the M5.4 2010 Kraljevo, Serbia 
earthquake. The model outputs both the individual building fragility and the aggregate portfolio-level repair cost 
data. The calculation of the expected repair cost for each building type was done using an expert-defined matrix 
that specifies average repair costs for each building type and damage category. The model was verified on a 
separate test portion of the 2010 Kraljevo dataset, yielding satisfactory confusion matrix parameter values and an 
excellent relative error when comparing total predicted to total actual repair costs. 
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Fig. 4 – Fragility curves for BT3, BT4 and BT5 obtained for the test dataset 
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