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Abstract

To date, earthquakes have been represented trough functions based on random vibrations without representative results of
the phenomena. To that purpose, a mathematical procedure is proposed, which is the result of a series of “sawtooth”
functions that allows to simulate any given earthquake ground acceleration record that represents the phenomena, and
allows us to determine and modify the characteristic parameters and evaluate future events.

On the other hand, the displacements and ground acceleration are spread through the structure from the ground to the top,
generating displacements and accelerations in the intermediate levels. This is, if the structure stiffness were infinite, the
acceleration on top would be de same as the bottom, but considering a different stiffness, the acceleration on any upper floor
is affected. All this makes it necessary to consider, the variations of the ground acceleration and stiffness, through the
ground to the top in the dynamic motion equilibrium equations.
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1. Introduction to Basal Movement

Considering a structure initially at rest and then subjected to a basal pulse, at the beginning t = to the structure
tends to follow at rest but then the masses move with the acceleration imposed, and the structure reacts with a

force proportional to the deformation between time t, and t;.

The end of basal shift is due to a new pulse in the opposite direction, but the structure and the masses continue
its displacement due to inertia, which sharply changes due to new stresses generated by the new basal pulse. The
equilibrium equations are given by:

m1Y1+kl(ys - yl)_ kz(Yz - yl) =0
:mzyz"'kz()ﬁ - yz)_ ks(ys - Yz) =0 with U, = i(ys ~ yi)

mnyn+kn (yn - y(n—l))= 0

Where it is get Eq. (1) M Jia}+ [K Ju} = MRy, § = {F )} (1)

To decouple the equations is necessary a linear transformation given by Eqg. (2):
u}=[o]z} )
Where [CD] is the eigenvectors matrix obtained by solving the eigenvalues problem given by Eqg. (3).
(K]-o"M]fw}=0 ©

The solution of this equation in terms of o’ is given by a family of eigenvectors, which makes it necessary to

0, =1i=]
impose the orthonormal condition given by, ¢iT¢i =6; = {51 L 0ix Jj in Eq. (4),
ij —
¢i.
(Dij =TT, J 4)
2
|2
i=1
The [<D]matrix is given by Eq. (5).
chl chZ q)ln
) ) . @
[@]=(®, ®, ... @)= * # 7 °F (5)
chl q)nz (Dnn
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Replacing Eq. (2) in Eq. (1), Eq. (6) is obtained.
M Jofz}+ Koz =[M]y.] (6)

Premultiplying by [M | * and then by [@]' it gets.

o] (MIF[M]ofzi+[o] [M[*[K]ofzi=[o] (M]* M}y, )
@] [ofiz}+[o] M] [K]o}z}=[@] {5} (7)

_ ¢112k11+¢212k22+ . L¢n12knn] 0 0
my m, My
0 [M+¢222k22 +~~+¢”22k””j 0 :
2p7 2 T -1 my m, m,
lq)j W, J: [(D] [M] [K][(I)]: : 0 0
[mzkﬁnzkm | L«fmzkm]
0 0 . ot
mom My
Where Ky =K, +Ky, Ky =K, 4Ky oot ki =Ky 5 02 =505 g207 =3 .2 500 02 = w,?]
m; i M
With o 2w |=[o] (M [K]o]= [, ] W e, |=[o] o’[o]
Then o] [0fz}+[0] @*[0fz}=[o] {y.} ®)
From Eq. (2) {u} = [(D]{Z} replacing in Eq. (8).
@] {a}+[@] Q*{u}=[0] {y.) ©)
Then aj+ Q" uj=1{y, (10)

.. 2
Uy +o; U; =Y,

Then it has been determined the expression that relates the ground acceleration with the movement of the
structure. To solve this equation is necessary to know the function of basal acceleration, which arises from a
seismic known record.
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2. Basal Movement Simulation Function

In order to define a function that represents a basal solicitation, a known basal solicitation record is used,
characterized by its mean frequency, pulse numbers and amplitudes.

Considering a hypothetical basal acceleration record as shown in Fig. 1, between t, and t;, there are 5 cycles
with similar At,, and 4 cycles between t; and ty with similar At,, then each cycle correspond to 27 , i.e.

In t=0, % T, 3%, 27 | then 2 series of sawtooth functions with @gand @, mean frequencies
representing the seismic event have been defined.

‘:'.'(f?}“ n; n, ne na

> t(seg)

Fig. 1 - Displacement record

_ — T.
Where Ti :(t toj; o, :2T—H;At=j;tn =nAt withn=12,...,n
n .

Each period consists of 4 fourth of a period, then it is possible to evaluate the displacements in each fourth of a
period or cycle in which the movement conditions are defined. Under this conditions it is possible to define a
sawtooth, periodic secant-sen function with unitary amplitude for every cycle given by Eq. (11).

n(t)= sen(a_)sn%j = sen(at, ) (11)
With:
@, : Mean cycle frequency
T.: Mean cycle time

& . Seismic displacement record
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The maximum values are obtained for integer numbers of the fourth period as shown in the following example in
Table 1 and Fig 2.

Table 1 - Unitary values
n ‘o 1 2 3 4 5

Fig. 2 - Secant-Sen function (Sawtooth)

T, = 80 )2 e5sec= At =
35

228 5 71sec

For t, =3At =3x5,71=1714sec

Multiplying sawtooth function n(tn) by an amplitude vector {5 } of seismic record, the basal movement is given
by:

O ={gin(t,)= jsen(@rt,)

Note that developed expressions are a mathematical representation of the image, seismic record, i.e. the same
function may represent displacement, velocity or acceleration. The matter is that the parameters coherently
represent the recorded phenomena.
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Fig. 8.21 Ground acceleration for the first 10 sec recorded for tbe north-south com-
ponent of the 1940 El Centro earthquake.
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The'h, the mean frequency its equal to the basal pulse record with same amplitudes than the seismic record, then
the function that simulates the seismic event is obtained.

Displacement:

{ys (t)} = {ﬁ}sen(asti ) {cf} Seismic amplitude vector

Example, Applying the displacement function considering 7 seconds period:

S

The mean angular frequency it's given by:

__ 211 6.38
O, =—=
T

S

1.75

_ rad
— 35903 Aec

t -1, T
T.=| | =L 75sec= A=~ =0,4375sec; 1, =nAt

(12)

Then considering an amplitude vector of known basal movement record {55} , for each interval nAt the relation
between values is checked in Table 2 and Fig 3.

Table 2 - Basal amplitude movement for each interval

n 0| 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
t =nAt [0]044 /088|131 175|219 263|306 35)394|438) 481525569613 6,56
{ £ (t)} (0—1) (1-3) (3—5) (5-7) (7-9) (9—11) (11-13) (13—-15)
) 2,0 -3,7 1,7 -0,8 2,5 -5,0 3,3 -2,4
? 2.0
2 1 /2 73:7

\ X
1 . / 134t} =1-08
\ / 13 75

0 AN : >
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Fig. 3 - Basal movement

st(sec)

Then, the amplitude in ny,n, interval is A =& —&;; in n,n, is A, =&, — &, etc. Each line represents the

basal amplitude movement, displacement, velocity or acceleration, in either positive or negative way, upward
positive, downward negative, then each line is a movement itself in which the initial value is the end value of the
former movement.
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Cohéidering basal pulses transmitted to the structure by with the basal frequency, the solicitation in presented
with the frequency imposed, then the equation of motion is given by,

U, + o’iu; = &enat (13)

The solution of this equation is given by numerical or analytical method, from which the second is presented.
An analytical solution of the equation is given by:

u(t)=u,(t)+u,(t) (14)

uc(t) : Complementary solution that satisfies the homogeneous equation = U, (t): Acos wt + Bsenat;
u, (t) : Particular solution from the second member of the equation = u o (t)=Ysena,t;

Replacing u,(t) in the differential Eq. (13)
~ Yo, sena,t + w?Ysenm,t = Senaw,t

Yo —@)=emv=—rt (15)

2 — 2
[0

Replacing in Eq. (14) it is get
u(t)= Acos wt + Bsenat s sena, t (16)
o’ -,

Int=0=u(t)=0=A=0

In t:0:>u(t):0:>B=_i

Replacing in Eq. (16)
u(t)= %(senﬁst —senaot) (17)

In this development, the phase difference y between basal pulse and level solicitation is not considered.
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3. Transversal Vibrations in Prismatic Sections

A beams that vibrates in one of its inertial axe and flex with elastic curve n(x), in every section there is a

bending moment M (X) and shear Q(X)that corresponds to a ficticious charge q(x) that represents the inertial
forces, then,

d’z M d d’
=—— =>EIp'=—M= Eln" =; Eln")=q(x
T S El S (E1)=-Q=: - (Elr)=ax)
o . o mo’n o%n
The inertial fictitious charge that acts by unit length, it's given by: — P = —.DA@t—2

D is density, A is the transverse section

2
Due to 77(X t) is a function of x and t, it satisfies: ;;[EI (;—77] =-DA—- gt?
X

2 24
For constant section it is have: ;? + a864 /- 0 (18)
X
El
with o’ = —
DA

The solution of the differential equation is given by a wave propagation in the increasing x direction represented
by the function n(x,t): f, (X —ct) . Considering the solution given by:

n(x,t)= nsen(Z;z(%—%D = nsen(%[ (x— ct)j (19)

2 2 4 4
It is verified o' =— Az and on = 167

= , replacing in (18) it is get
e = v /ﬁpg()g

Er?

r=t
/1 D A

c: Propagation speed
n: Number of waves

r: Turning radius

In the case of transverse vibrations on the structure, the velocity c is dependent of the wavelength A of the
perturbation, which is different from the longitudinal vibration, which doesn't depend on it.

Then, analyzing the structure response of a basal pulse, is important to consider the reflected wave given by the
solution of the differential equation that could increase the solicitation.
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4. Conclusions

So far, the solution of the dynamic equilibrium's equations have rested upon the idea about normalize those
equations under the orthogonal condition. However, this work has not considered this paradigm, due to it is not
possible to apply this principle over the mass matrix to obtain a unitary matrix as result and, subsequently, to be
applied over the rigidity matrix - which are forces - to obtain as result the natural vibrating frequencies.

Therefore, this work shows the procedure independently of this practice and succeed to decouple the movement
equilibrium’s equations respecting it's dimensionality.

In the evaluation of the phenomena of spreading seismic waves over the highest levels of the structure; applying
the common practice, the results do not show significant differences. However, when inertial masses and
wavelength are considered; this effect should be taken into account and be studied in further works.
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