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Abstract 
This study investigates the application of the tail-equivalent linearization method (TELM) to nonlinear stochastic dynamic 
analysis of seismically isolated structures. For general multi-degree-of-freedom structural systems, with the ground motion 
discretized by a finite set of random variables, TELM can be used to compute probability distributions of nonlinear 
responses as well as seismic fragility functions. The tail-equivalent linear system (TELS) is an equivalent system in the 
sense that the failure probability of TELS is identical to the first-order approximation of the failure probability of the 
nonlinear system, and TELS is numerically defined by a discretized impulse-response function or frequency-response 
function. A typical building model with seismic isolation bearing and a corresponding non-isolated model are used to study 
the influence of seismic isolation on the seismic reliability of the structure. Two stochastic ground motion models 
corresponding to different soil conditions are considered to investigate the influence of soil condition on the effectiveness of 
seismic isolation.  
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1. Introduction 
In the past few decades, seismic isolation has become one of the most effective techniques to improve the 
seismic performance of structures. In seismic isolated structures, the structural fundamental period is split in a 
longer period (bearing period) and shorter period (superstructure period); moreover, the energy dissipating 
capacity of the structure can be increased by using specific dissipators. Consequently, the seismic effect on the 
superstructure can be largely reduced. Nonlinear analysis is often required to investigate the performance of 
seismically isolated structures because most of the seismic isolators are characterized by inelastic constitutive 
laws. Moreover, considering the intrinsic stochastic nature of ground motions, it is of interest to use nonlinear 
stochastic dynamic analysis to study the seismic performance of seismically isolated structures.  

The equivalent linearization method (ELM) [1-4] is one of the most widely-used approaches for nonlinear 
stochastic dynamic analysis of multi-degree-of-freedom (MDOF) systems, and it has been employed in several 
applications involving base-isolated structures [5-8]. In general, the conventional ELM is accurate in estimating 
mean-square responses; however, estimations of crossing rates, first-passage probability and fragility functions 
can be far from correct [9].  

A recent alternative to ELM is the tail-equivalent linearization method (TELM) [9,10]. Similar to the 
conventional ELM, TELM is applicable to general MDOF structural systems; however, TELM has superior 
accuracy in estimating crossing rates, first-passage probability, and fragility functions particularly in the tail 
region. Moreover, in contrast to the conventional ELM, TELM is a non-parametric method in the sense that there 
is no need to select a parametric linear system. The tail-equivalent linear system (TELS) is numerically obtained 
in terms of a discretized impulse-response function (IRF) or frequency-response function (FRF), thus allowing 
more flexibility in the linearization.  

The time- and frequency-domain TELMs have been applied to various problems with non-isolated 
structural systems [9-13]. However, to our knowledge, the application of TELM to structures with base isolation 
has not been fully investigated. Motivated by the aforementioned perspective, this paper illustrates TELM for 
application to the nonlinear stochastic dynamic analysis of base-isolated buildings. After a review of basic 
theories and procedures of TELM, a typical shear-building model with and without seismic isolation is used to 
study the influence of seismic isolation on the seismic reliability of the structure. Two stochastic ground motion 
models, corresponding to “firm” and “soft” soil conditions, are considered to investigate the influence of soil 
condition on the effectiveness of seismic isolation. Crossing rates, first-passage probabilities, and fragility 
functions for the isolated and non-isolated structure, and for the two soil conditions are computed using TELM. 
Moreover, the computation of TELSs provides valuable insights into the mechanical properties of the 
seismically isolated structure.  

2. Basics of the tail-equivalent linearization method 
Consider a linear structural system subjected to a zero-mean, Gaussian stochastic seismic excitation 𝐹(𝑡) 
uniformly applied at all its supports. A generic response of the structure, 𝑍(𝑡), can be expressed in terms of a 
Duhamel’s integral 

𝑍(𝑡) = � ℎ(𝑡 − 𝜏)𝐹(𝜏)𝑑
𝑡

0
𝜏, (1) 

in which ℎ(𝑡) is a generalized IRF for the specific input-output pair. For TELM analysis, 𝐹(𝑡) is discretized and 
represented in terms of a finite set of random variables as 

𝐹(𝑡) = � s𝑛(𝑡)u𝑛

𝑁

𝑛=1

= 𝐬(𝑡)𝐮, (2) 
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where 𝐮 = [𝑢1 ⋯𝑢𝑁]𝑇 is an 𝑛-vector of independent standard normal random variables, 𝐬(𝑡) = [s1(𝑡)⋯ s𝑁(𝑡)] 
is a row vector of deterministic basis functions dependent on the specific stochastic excitation model, and 𝑁 is 
the number of terms used in the discrete representation. Substituting Eq. (2) in Eq. (1), one obtains 

𝑍(𝑡, 𝐮) = � ℎ(𝑡 − 𝜏)𝐬(𝑡)𝐮𝑑
𝑡

0
𝜏 = 𝐚(𝑡)𝐮, (3) 

in which 𝐚(𝑡) = [𝑎1(𝑡)⋯𝑎𝑁(𝑡)] and 

𝑎𝑛(𝑡) = ∫ ℎ(𝑡 − 𝜏)s𝑛(𝑡)𝑑𝑡
0 𝜏, 𝑛 = 1, … ,𝑁 (4) 

Note that 𝑍(𝑡) is replaced by 𝑍(𝑡, 𝐮) to explicitly indicate its dependence on random variables 𝐮. Also note that 
vector 𝐚(𝑡) contains the information about the IRF as well as the basis functions 𝑠𝑛(𝑡) that define the ground 
motion representation.  

In the space of 𝐮, define the limit-state function 

𝐺(𝐮, 𝑡, 𝑧) = 𝑧 − 𝑍(𝑡, 𝐮), (5) 

where 𝑧  is a prescribed threshold for the response 𝑍(𝑡, 𝐮)  at time 𝑡 . Note that Pr[𝐺(𝐮, 𝑡, 𝑧) ≤ 0] = Pr [𝑧 ≤
𝑍(𝑡, 𝐮)] for varying 𝑧 defines the complimentary cumulative distribution function (CCDF) of the response at 
time 𝑡. Let 𝐮∗(𝑡) denote the design point in the context of the first-order reliability method (FORM) [14,15], i.e.,  

𝐮∗ = arg min{‖𝐮‖ |𝐺(𝐮, 𝑡, 𝑧) = 0} (6) 

In most cases, the design point 𝐮∗ is computed using gradient based algorithms [16-18]. Using Eq. (3) and Eq. 
(6) in Eq. (5), one can easily show that [9] 

𝐚(𝑡) = 𝑧
𝐮∗T(𝑡)
‖𝐮∗(𝑡)‖2

 (7) 

Note that 𝐚(𝑡) is the gradient vector of the limit-state hyper-plane 𝐺(𝐮, 𝑡, 𝑧) = 𝑧 − 𝐚(𝑡)𝐮 = 0. 

Next consider a nonlinear structure subjected to the discretized excitation in Eq. (2). Then, the generic 
response 𝑍(𝑡, 𝐮) is a nonlinear function of 𝐮. In TELM, the design point of the nonlinear system is used to 
define a hyperplane named TELS. This is equivalent of linearizing the limit state function at the design point. To 
completely identify the TELS in terms of its IRF, first the design point 𝐮∗ of the nonlinear system is used in Eq. 
(7) to determine the gradient vector 𝐚(𝑡); then, this is used in Eq. (4) to numerically solve for the IRF ℎ(𝑡). The 
TELS is an equivalent system in the sense that the failure probability of the TELS is identical to the FORM 
approximation of the failure probability of the nonlinear system. Furthermore, the tangent hyper-plane of the 
nonlinear system response at the design point coincides with the hyper-plane of the linear system response for 
the same threshold and time. 

The difference between time- and frequency- domain TELMs lies in the specific expression of 𝐬(𝑡) in Eq. 
(2) and the way Eq. (4) is solved. In the time-domain TELM, the IRF in Eq. (4) is discretized at 𝑁 time points, 
so that  

∑ ℎ(𝑡 − 𝑡𝑚)𝑠𝑛(𝑡𝑚)Δ𝑡𝑁
𝑚=1 ≅ 𝑎𝑛(𝑡), 𝑛,𝑚 = 1, … ,𝑁, (8) 

where 𝑡 = 𝑡𝑁 , 𝑡𝑚 = 𝑚Δ𝑡 , and Δ𝑡  is an incremental time step. The IRF is obtained by solving Eq. (8) for 
ℎ(𝑡𝑁 − 𝑡𝑚) at time points 𝑡𝑁 − 𝑡1, 𝑡𝑁 − 𝑡2,…, 𝑡𝑁 − 𝑡𝑁−1.  

For the frequency-domain TELM, the stationary stochastic excitation 𝐹(𝑡) is written in the form [19] 

𝐹(𝑡) = �𝜎(𝜔𝑘)[𝑢𝑘

𝐾/2

𝑘=1

cos(𝜔𝑘𝑡) + 𝑢𝐾/2+𝑘 sin(𝜔𝑘𝑡)], (9) 

3 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

where 𝐾 is even, 𝜔𝑘 is a sequence of equally spaced frequency points with  Δ𝜔 an incremental frequency step, 
(i.e., 𝜔𝑘 = 𝜔𝑘−1 + Δ𝜔 , 𝑘 = 1, … , 𝐾/2 , with  𝜔0 = 0  and 𝜔𝐾/2  being the cut-off frequency of the process), 
𝜎(𝜔𝑘) = �2𝑆(𝜔𝑘)Δ𝜔, and 𝑆(𝜔) is the two-sided power spectral density (PSD) of the process 𝐹(𝑡). Note that 
Eq. (9) is of the same form as the generalized Eq. (2) with index 𝑘  (to underlie the frequency domain 
discretization) instead of 𝑛 , and s𝑘(𝑡) = 𝜎(𝜔𝑘) cos(𝜔𝑘𝑡) for 𝑘 = 1, … , 𝐾/2 and 𝑠𝑘(𝑡) = 𝜎(𝜔𝑘) sin(𝜔𝑘𝑡) for 
𝑘 = 𝐾/2 + 1, … , 𝐾 . Using the frequency-domain representation Eq. (9) and basic principles of frequency-
domain analysis [10], Eq. (4) leads to  

𝑎𝑘(𝑡) = 𝜎(𝜔𝑘)|𝐻(𝜔𝑘)| cos(𝜔𝑘𝑡 + 𝜑𝑘)   for 𝑘 = 1, … , 𝐾/2
                    = 𝜎(𝜔𝑘)|𝐻(𝜔𝑘)| sin(𝜔𝑘𝑡 + 𝜑𝑘)   for 𝑘 = 𝐾/2 + 1, … , 𝐾, 

(10) 

where |𝐻(𝜔)| is the modulus of the FRF, 𝜑 is the phase angle of the FRF, and 𝑎𝑘(𝑡) are obtained from Eq. (7). 
The modulus and phase angle of the FRF are easily computed from Eq. (10).  

With the IRF/FRF obtained from time/frequency domain TELM analysis, various response statistics can 
be effortlessly computed using linear stochastic dynamics. 

To conclude, the procedures of TELM analysis can be generalized as follows. 

I. Discretize the ground motion into a finite set of random variables. Time or frequency domain 
discretization are both equally valid options (see [19, 20]).  

II. For a specified threshold 𝑧, compute the design point 𝐮∗ using optimization algorithms (see [16, 17]). 

III. Compute the gradient vector of TELS using Eq. (7). 

IV. Solve for the IRF using Eq. (4) (time domain), or for the FRF using Eq. (10) (frequency domain). 

V. Compute response statistics such as the crossing rates, first-passage probability, fragility functions 
using standard linear stochastic dynamics (see [9]).  

The procedures II-V are often repeated for a sequence of thresholds, so that response distributions can be 
numerically obtained. It is important to note that TELS will vary as the threshold 𝑧 in procedure II varies, unless 
the structure is linear. This property allows TELM to capture the non-Gaussianity of the nonlinear response. 

TELM is remarkably efficient for computing fragility functions, i.e. 

Fr(𝑠) = Pr[𝐺(𝐮, S) ≤ 0|𝑆 = 𝑠], (11) 

where 𝑠 is a scaling factor of the ground motion, and 𝐺(𝐮, S) is the performance function. It can be shown that 
TELS is independent of the scaling of the ground motion [9], so that the same TELS can be used to estimate the 
fragility function.  

3. TELM analysis of base-isolated building model  
3.1 Analysis model 

Consider a 6-DOF base-isolated shear-building model shown in Fig. 1. We assume a rubber bearing isolation 
system for which the force-deformation behavior can be expressed as a one-dimensional non-degrading Bouc-
Wen model [21] i.e. 

𝑘[𝛼𝑋(𝑡) + (1 − 𝛼)𝑍(𝑡)] = 𝐹𝑘(𝑡) 

𝑍̇(𝑡) = −𝛾�𝑋̇(𝑡)�|𝑍(𝑡)|𝑛�−1𝑍(𝑡) − 𝜂|𝑍(𝑡)|𝑛�𝑋̇(𝑡) + 𝐴𝑋̇(𝑡), 
(12) 

where parameters of the Bouc-Wen model are set as: 𝑘 = 0.2 × 104[kN/m] , 𝛼 = 0.05 , 𝑛� = 3 , 𝐴 = 1  and 
𝛾 = 𝜂 = 1/(2𝑢𝑦𝑛�), in which 𝑢𝑦 = 0.01[m]. The superstructure is assumed to be linear. The based-isolated 
structure has an initial fundamental period of 1.933[sec]  and second mode period of 0.312[sec] . The 
corresponding non-isolated structure (the superstructure of the isolated model) has an initial fundamental period 
of 0.511[sec] and second mode period of 0.215[sec]. The damping ratio for the bearing is set to 20%, and the 
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damping ratio for each mode of the superstructure is set to 5%. The structure is subjected to a stochastic ground 
motion with a duration of 10[sec]. The acceleration power spectrum density (PSD) of the ground motion is 
described by a modified Kanai-Tajimi model suggested by Clough and Penzien [22] 

𝑆(𝜔) = 𝑆0
𝜔𝑓4 + 4ζ𝑓2𝜔𝑓2𝜔2

(𝜔𝑓2 − 𝜔2)2 + 4ζ𝑓2𝜔𝑓2𝜔2
1

(𝜔𝑔2 − 𝜔2)2 + 4ζ𝑔2𝜔𝑔2𝜔2, (13) 

where 𝑆0 is a scale factor, 𝜔𝑓 and 𝜁𝑓 are the filter parameters representing, respectively, the natural frequency 
and damping ratio of the soil layer, and 𝜔𝑔 and 𝜁𝑔 are parameters of a high pass filter introduced to assure finite 
variance of the ground displacement. Two soil conditions associated with “firm” and “soft” soils are considered 
with the parameter values listed in Table 1. The scale factors 𝑆0 in Table 1 are selected such that the mean peak 
ground acceleration of the stochastic ground motions for the two soil conditions are around 0.5g.  

 
Fig. 1 – Structure model 

Table 1 – PSD parameters for model soil types 

Soil type 𝑆0 [m2/s3] ω𝑓𝑘 [rad/s] ζ𝑓𝑘 ω𝑔𝑘 [rad/s] ζ𝑔𝑘 

Firm 0.031 15.0 0.6 1.5 0.6 

Soft 0.082 5.0 0.2 0.5 0.6 

The acceleration PSDs for the two soil conditions are illustrated in Fig. 2.  

 
Fig. 2 –PSDs of ground acceleration for two soil conditions  
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Using the ground acceleration PSD models, the ground motion processes can be discretized into a finite set of 
random variables. In this paper, the frequency domain discretization is used (see Eq. (9)). The cut-off frequency 
is set to 20π[rad/s] (10 [Hz]), and the frequency step Δ𝜔  is set to 0.1π[rad s⁄ ]. The number of random 
variables is 400.  

 

3.2 Design point excitations and responses 

In structural reliability theory, the design point is the point belonging to the failure domain with the highest 
probability density function. In stochastic dynamic analysis via TELM, the design point defines the so-named 
design-point excitation, which is the realization belonging to the failure domain with the highest probability 
density. The structural response arising from the design-input excitation is the so-named design-point response. 
The drift of the top floor (5th floor for the superstructure) is considered as the response quantity of interest. A 
threshold 𝑧 = 0.01[m] and time point 𝑡𝑛 = 10[sec] are considered to illustrate the design point, design point 
excitations and responses. Fig. 3 shows the design point excitations and responses for the two structures and the 
two ground motion models. Also, the reliability indexes are listed in Fig. 3. In Fig. 3, points from u=1 to u=200 
are associated with the 𝑢𝑝  component in Eq. (9), and points from u=201 to u=400 are associated with the 
𝑢𝐾/2+𝑘 component in Eq. (9) 

 
Fig. 3 –Design points for different structures and soil models  
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Fig. 4 –Design point excitations and responses for different structure and soil models  

 

The following observations in Fig. 3 and Fig. 4 are noteworthy: 

I. For both of the soil conditions, the design points for the isolated structure model have a richer low 
frequency content than the non-isolated one. Consequently, the design point excitations and responses for 
the isolated model show less oscillations than the non-isolated one, since the energy is driven into the 
system from the bearing period. 

II. For both isolated and non-isolated models, lower frequency contents of the design point for soft soil 
condition are more significant than that for firm soil condition. As a result, the design point excitations and 
responses for the soft soil condition exhibit less oscillations than the firm soil condition. 

III. For both of the soil conditions, the use of base-isolation significantly increases the reliability indexes for 
the given thresholds.  

IV. Given the assigned parameters, the reliability index for the firm soil condition is smaller than the reliability 
index for the soft soil condition; however, an opposite behavior is observed for the isolated model. This 
suggests that the presence of soft subsoil could decrease the effectiveness of base isolation. Further studies 
with different soil periods needs to be developed before drawing additional conclusions. 

 

3.3 Frequency-response functions of the tail-equivalent linear system 

The frequency-response functions (FRFs) of the tail-equivalent linear system for the two different structures, the 
two soil models, and for different threshold values are illustrated in Fig. 5. The FRFs shown in Fig. 5 
characterize the amplitude of harmonic drift of the top floor for a harmonic ground acceleration. 
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Fig. 5 –Frequency response functions for different structures and thresholds     

Note that since the superstructure is linear, the FRF of the non-isolated model is a physical property that is 
independent of the threshold or subsoil condition. As expected, the FRF of the isolated model has richer low 
frequency content, and its amplitude is much smaller than that of the non-isolated model. Observe that the FRF 
of the isolated model is not overly sensitive to the threshold. This is the result of the current assumptions. In 
particular, the bearing system yields rapidly and essentially acts like a linear system with stiffness equal to its 
post hardening stiffness. Since this is considerably softer than the initial stiffness, the mode spacing (between 
bearing period and superstructure period) is enlarged. Consequently, the bearing system acts as a linear filter in 
series. As result, the response of the superstructure can be interpreted as the response of a linear system to a 
color noise. The color noise is defined by the combination of the input PSD and the PSD of the isolator filter. 
Given this interpretation, it follows that the TELS is invariant to the threshold. However, different assumptions 
may lead to different conclusions.  

 

3.4 Response statistics 

Crossing rates, first-passage probability distributions, and the fragility functions with respect to the mean peak 
ground acceleration and the first-passage probability of the top-floor drift at threshold 𝑧 = 0.01[m] for different 
structure and soil models are illustrated in Fig. 6. Results of Fig. 6 are computed using linear random vibration 
solutions. 

 
Fig. 6 –Crossing rates, first-passage probabilities and fragility functions for different structural and soil models  
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Fig. 6 implies similar mechanical properties of the base-isolated structure as described in the previous two 
subsections.  

Finally, as discussed in the previous subsection, given the assumption underlying this study, the FRF of 
TELS seems not sensitive to the threshold, thus it might be valid to only compute one design point and the 
corresponding FRF in determining response statistics. Fig. 7 corroborates this idea. The figure shows the first-
passage probability distributions of the top-floor drift obtained from the TELM analysis using a sequence of 
design points compared with the result obtained from using only one design point for threshold 𝑧 = 0.01[m]. 
Note that the result illustrated in Fig. 7 is associated with the firm soil condition. It is found that for soft soil 
condition and other response statistics, the trend in Fig 7 still holds.  

 
Fig. 7 –First-passage probability distribution estimations from TELM using a sequence and single design points  

 

4. Conclusions 
The paper studies stochastic dynamic behavior of base-isolated buildings using tail-equivalent linearization 
method (TELM). A base-isolated shear-building model and the corresponding non-isolated model are studied. 
Two soil conditions associated with firm and soft subsoils are considered. Response statistics such as the 
crossing rate, first-passage probability distribution and fragility function are computed using linear random 
vibration solutions for the tail-equivalent linear system (TELS). It is found that the presence of base-isolation 
bearing significantly increases the reliability of the structure, although the base-isolation tends to be less 
effective for soft subsoil condition. For this example, it is also found that TELS is not overly sensitive to the 
response thresholds when the superstructure is considered elastic. Given this, it is reasonable to compute only 
one design point to obtain the response statistics.  
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