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Abstract 

This paper presents a new approach for modeling the tensile cyclic response of reinforced concrete (RC) subjected to biaxial 

stress conditions. The model is based on equilibrium, constitutive and compatibility conditions applied on a cracked RC 

element with arbitrary reinforcement configuration. Cyclic bond degradation effects are accounted for in order to provide 

physical meaning to tension-stiffening, crack-closing and crack-opening phenomena. The proposed model was implemented 

into an orthotropic, smeared-crack membrane finite element based on the fixed-crack assumption. A number of verification 

examples on reinforced concrete panels, shear critical beams and walls subjected to monotonic and cyclic loading is 

presented. Emphasis is made on adequate modeling of shear failures, due to its detrimental effect on strength and energy 

dissipation capacity. 

Keywords: reinforced concrete, cyclic analysis, membrane elements, shear, tensile behavior 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

2 

1. Introduction 

Two-dimensional reinforced concrete (RC) members, such as squat walls, beam-column joints and coupling 

beams play a crucial role in providing lateral strength and stiffness in building structures. However, they are 

prone to brittle failure modes if ductile behavior is not provided by adequate design and detailing. Of particular 

concern are existing RC structures located in seismic regions and designed before the introduction of capacity 

design principles and more rational member design approaches, such as those related to shear design.  

 

Although significant improvements have been made in the recent seismic design codes to prevent brittle 

shear failures, deeper understanding of shear transfer mechanisms is required for an adequate assessment of 

member strength and ductility. Current design codes provide empirically based equations that may result in 

inaccurate and even unconservative predictions for members outside the dataset used for their calibration [8, 14, 

17]. 

 

At the same time, significant effort has been made in developing analytical models for RC members in 

biaxial stress conditions capable of predicting brittle failure modes [4, 12, 18]. Implementation of these models 

within the Finite Element Method (FEM) allows modeling structural systems under more realistic loading and 

boundary conditions. Good agreement has been generally found with experimental tests of uniformly reinforced 

members subjected to monotonic loading [4, 19]. Although the monotonic response represents a good 

approximation to the envelope of the cyclic response, several response parameters associated to reversed cyclic 

loading cannot be directly obtained, such as residual deformations, hysteretic energy dissipation and cyclic 

stiffness and strength degradation. These parameters result to be of paramount importance in the framework of 

performance-based engineering. 

 

Meanwhile, accuracy of analytical results under cyclic loading conditions is highly dependent on reliable 

constitutive models and robust numerical algorithms. Several experimental tests were conducted on cyclic 

behavior of RC panels and walls [10, 11, 13, 16], which helped refining and developing improved analytical 

models. However, different researchers developed different models for the same problem, whereas a general and 

unanimously accepted method is still lacking.  

 

An attempt is made in the present work to provide a rational cyclic constitutive model for reinforced 

concrete in tension. The model is closely based on the mechanistic approach introduced in [15]. It uses 

equilibrium, compatibility and constitutive relations in the calculation of average concrete stresses at given 

tensile strains. Bond degradation effects are accounted for in a smeared way by means of the hysteretic bond 

model. The procedure is implemented in a two-dimensional membrane finite element using a single-crack fixed-

crack approach. The level of agreement with experimental results for RC panels, walls and shear critical beams 

is finally discussed. 

2. Analytical procedure 

2.1 Proposed cyclic tensile model 

Fig. 1 shows a cracked RC element with an average crack spacing s and a steel layer of reinforcement ratio ρ in 

the x direction. Total principal tensile strains εx are applied normal to the cracks, while εy are transverse strains 

causing Poisson expansion. Three regions can be distinguished in the element: (b) fully bonded, (sl) partially 

bonded and (cr) crack region.  
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Fig. 1 – Cracked reinforced concrete element 

The unbonded length parameter λ represents the partially bonded portion, where bond-slip occurs (So et 

al. 2008). Thus the total strain εx can be expressed as a function of λ and the local steel strains: 

 εx = (1-λ)εb
s + λ (εsl

s+ εcr
s) (1) 

Alternatively Eq. (1) can be expressed as a function of concrete local strains [15]: 

 εx = (1-λ)ε
b
c + λ (ε

sl
c+ ε

p
c+ ε

cr
c) (2) 

Full compatibility of strains in (b) implies that εb
c = εb

s= εb. Concrete strains due to Poisson are given as εp
c=-νεy, 

where ν takes the value of 0.25 before yielding and 1.90 afterwards, based on the experimental work by [20]. 

Average concrete stresses are computed averaging concrete local stresses in the three regions (b), (sl) and (cr): 

 
s

ss)(s)-1(
=

c
cr

xc
sl

xc
b

c
av σε+σε−λ+σλσ  (3) 

Since total strains εx are comparatively small, Eq. (3) can be simplified to: 

 σ
av

c = (1-λ)σ
b
c+λσ

sl
c (4) 

Concrete crack stresses σ
cr

c will be zero during opening of cracks, i.e. -ε
cr

c > 0. Upon unloading from tensile 

stresses, σ
cr

c will be initially zero until closing of cracks (ε
cr

c = 0), after which compressive stresses will be 

transferred through contact between concrete blocks. In practice, contact might occur before complete closing of 

cracks due to misalignment of cracked surfaces. Analogously, average steel stresses are given as: 

 σ
av

s = (1- λ) σ
b
s+λσ

sl
s (5) 

Local equilibrium conditions between two sections in the fully bonded (b) and bond slip regions (sl), and in the 

bond-slip (sl) and crack regions (cr) can be expressed as: 

 σ
b
c+σ

b
s = σ

sl
c +σ

sl
s (6) 

 σ
sl

c +σ
sl

s = σ
cr

c +σ
cr

s (7) 

where steel stresses in the crack region σ
cr

s have been introduced. Linear elastic constitutive relationships are 

valid for both steel and concrete in the fully bonded region. Thus it can be written: 

 σb
c = Ec ε

b
c (8) 

 σ
b
s = ρ Es ε

b
s (9) 
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An elastic-perfectly plastic model is assumed for steel in (sl) and (cr) regions: 

 σsl
s = ρ Es (ε

sl
s- ε

sl
spl) ≤ ρfy (10) 

 σ
cr

s = ρ Es (ε
cr

s- ε
cr

spl)≤ ρfy (11) 

These strains are related to the average plastic strain as follows: 

 ε
av

spl = λ(ε
sl

spl+ε
cr

spl) (12) 

since plastic strains in the fully-bonded region are zero. 

In the bond slip region, shear stresses will be transferred between steel and concrete inducing tensile stresses in 

the concrete. Assuming a constant distribution of shear stresses over the bond-slip length λs, the corresponding 

concrete force and stress are given as:  

 ∫
λ

τπφλ=τπφ
x

0

c
sl sdx=f  (13) 

 s4
A

s
=

A

f
=

cc

c
sl

c
sl λ

φ
ρτ=τπφλσ  (14) 

In (14) bond stresses τ need to be evaluated. These are taken as a function of the total strain in the direction of 

the reinforcement τ(εx). Details on the proposed hysteretic function for τ(εx) can be found elsewhere [7]. 

The developments presented so far lead to seven unknown variables, which are: λ, σ
av

c, σ
cr

s, σ
sl

s, ε
b
c, ε

sl
s 

and ε
cr

s. Upon making use of the constitutive relations, the number of available equations is six: two average 

equilibrium (4) and (5), two local equilibrium (6) and (7), and two compatibility equations (1) and (2). Explicit 

calculation of εsl
spl, ε

cr
spl is not required, hence (12) is not included in the set of equations. In order to find a 

mathematical solution, it is assumed that ε
b
c is approximately 2 times the cracking strain. This allows calculation 

of the rest of variables and, in particular, of σ
av

c, which is used in the finite element calculations. Detailed 

description on the solution procedure is given in [7]. 

2.2 Compressive cyclic model 

The tensile cyclic model presented so far is combined with a cyclic compressive model described below Fig. 2.  

 

Fig. 2 – Combined compressive and tensile cyclic model 

The compressive envelope is described by the Hognestad parabola with a reduction of the compressive 

strength due to simultaneous transverse tensile strains [18]: 
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oc2/0.34 - 0.80

1
=

εε
βσ  (15) 

Nonlinear unloading follows the model from [12] with the plastic compressive strain given as:  

 εcp = εc1-εo (0.87(εc1/εo)-0.166(εc1/εo)
2
) (16) 

Cyclic strength and stiffness degradation is accounted for in the degradation parameter βd:  

 ( ) 5.0

o re cm

d
)/-(0.1  1

1
=

εεε+
β

        for εcm≤εo  

 ( ) 6.0

o re cm

d
)/-(0.175  1

1
=

εεε+
β

    for εcm≤εo (17) 

Transition towards tensile strains is done linearly connecting the plastic strain εcp with the previous unloading 

point from the tensile envelope as shown in Fig. 2. 

2.3 Shear stiffness 

The shear stiffness of cracked reinforced concrete is modeled using the smeared shear stiffness approach for 

fixed-crack formulations, allowing divergence between principal stress and strain directions: 

 
)cos)(sin2(

)cos)(sin(
=G

21

21

εε

σσ

θ∆θ∆ε−ε
θ∆θ∆σ−σ

 (18) 

Shear stresses at the crack arising from non-coincidence between principal directions and crack directions are 

calculated according to: 

 max,civG= ≤γτ
 

(19) 

An upper limit is set on the maximum interface shear transferred along cracks due aggregate interlock according 

to [18]:  

 

g

c

maxci,

a16

w24
31.0

f'.180
=v

+
+

 (20) 

where w is the crack width and ag the maximum aggregate size. 

2.4 Uniaxial steel model 

Average steel stresses and strains in equations (12) and (5) are determined using a uniaxial model for a mild steel 

bar embedded in concrete. The Menegotto-Pinto hysteretic model with modified isotropic hardening [6] is used. 

The average yield stress fy
av

 of the embedded bar is determined according to [2]:  

 fy
av

 = (0.91-2B) fy  
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where fct is the concrete tensile strength, assumed to be fct = 0.65(f’c)
0.33

. 

3. Finite Element Formulation  

The material model described above was implemented within a small-strain membrane finite element. The 

element presents four nodes with three degrees of freedom (dofs) each: two translational and one rotational. This 

permits using higher-order displacement interpolation functions, resulting in relatively coarse meshes when 

compared with constant strain elements. Complete details on the element formulation are given elsewhere [7]. 

In order to account for material nonlinearity and solve the nonlinear system of equations, standard FEM 

procedures were used, such as the Newton-Raphson method with displacement control [1, 5]. The vector of 

internal total stresses σxy and the material stiffness matrix Dxy, calculated at each integration point using the 

previously described constitutive models, are used to compute the vector of internal forces Fint and the tangent 

stiffness matrix KT of the entire structure. A displacement-based convergence criteria is performed at each 

iteration step and, if not satisfied, a new estimate of incremental nodal displacements is calculated using KT and 

the unbalanced force vector R. New total strains are then computed using the strain-displacement B matrix. A 

summary is shown in the flow chart below Fig. 3. 

 

Fig. 3 – Flow chart on the FEM procedure 

4. �umerical validation  

4.1 RC panels 

The series of SE panels tested by Stevens et al. (1991) were used for validation. It consisted of three square 

specimens 1524mm × 1524mm × 285mm subjected to pure cyclic shear and shear combined with biaxial 
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compression Fig. 4. Specimen properties are summarized in Table 1. Calculations were done with an average 

crack spacing of 50mm, and a maximum bond stress of 5 MPa.  

 

Fig. 4 – Panel test set up [16] 

Table 1 – Panel material and loading properties. 

Panel 
Loading Concrete  x- steel y-steel 

(σx:σy:τxy) εo(10
-3

) fc'(MPa) ρx(%) fxy(MPa) ρy(%) fyy(MPa) 

SE8 0:0:1 2.60 37.0 2.93 492 0.98 479 

SE9 0:0:1 2.65 44.2 2.93 422 2.93 422 

SE10 0.33:0.33:1 2.20 34.0 2.93 422 0.98 479 

 

Fig.5 compares shear stress-strain results for panel SE9, which had equal reinforcement in both directions. 

This panel failed at a shear stress τxy = 9.55 MPa, after yielding of y-reinforcement. Under ideal laboratory 

conditions, panel SE9 should have failed upon simultaneous yielding of both x and y reinforcements at a 

theoretical value of 12.66 MPa [12]. The analytical value is 11.02 MPa which is closer to the theoretical one. 

 

Fig. 5 – Shear stress-strain response for panel SE9 
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Fig.6 and Fig.7 compare shear stress-strain results for panels SE8 and SE10. Panel SE8 failed at 5.76 MPa 

due to concrete shear failure, after sustaining a large number of repeated cycles beyond yield, causing large 

permanent strains. Analytical results agree well with overall panel behavior, including hysteretic pinching and 

plastic strain accumulation. However, maximum shear stresses tend to be higher than the experimental ones in 

the post-yield range. Panel SE10 was subjected to combined shear and biaxial compression. It failed due to 

concrete crushing upon yielding of y-reinforcement. Very good agreement was found for this panel in terms of 

shear strength and hysteretic response. 

 

Fig. 6 – Shear stress-strain response for panel SE8 (left) and panel SE10 (right) 

4.2 PCA walls 

The series of Portland Cement Association (PCA) walls were tested in 1971 by Oesterle et al. [11] as part of an 

extensive experimental campaign on cyclic response of RC shear walls. Specimens B2 and B8 were selected for 

analysis. Both walls were 4570mm × 1910mm specimens with 305mm thick flanges and 102mm thick web 

(Fig.7). The main difference was the presence of confining steel in the boundary zone (ρy=1.35% with 

fy=455MPa) and an applied constant axial stress of 3.75MPa for wall B8 (Table 2). Both walls were built 

integral with a heavy base structure and stiff top slab, at which cyclic lateral displacements were applied in 

25mm increments with two excursions at each. 

Table 2 – PCA wall material and loading properties. 

Wall zone 
Tickness Concrete  x-steel y-steel 

t(mm) Ec(MPa) fc'(MPa) ρx(%) fxy(MPa) ρy(%) fyy(MPa) 

B2-Web 102 32700 53.7 0.63 533 0.29 533 

B2-Flanges 305 32700 53.7 0.63 533 3.67 410 

B8-Web 102 25600 42.1 1.38 489 0.29 455 

B8-Flanges 305 25600 42.1 1.38 489 3.67 448 

 

The FE mesh is shown in Fig.7. A total of 28 elements, with 2 × 2 integration points (IPs) each, were used 

to model the web and flanges, while 4 were used to model the top slab. Fixed boundary conditions were assumed 

at the bottom wall elements. The lateral displacement was imposed at the top left corner, using the corresponding 

horizontal degree of freedom as displacement control. Vertical forces were applied at the top slab for specimen 

B8, in order to simulate the effect of constant axial load. The tensile concrete model was defined with an average 

crack spacing of 50mm, maximum bond stress of 5MPa.  
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Fig. 7 – PCA Walls mesh and cross section (in mm) 

The hysteretic lateral force-displacement response is compared in Fig. 8. Good agreement is found for 

wall B8, while some shortcomings can be identified for wall B2. For instance, initial stiffness and strength is 

significantly overestimated. It was found from the experimental program [11] that wall B2 had been subjected to 

previous load cycles below yield which pre-cracked the wall. Relatively good agreement is observed in terms of 

cyclic strength and unloading stiffness, whereas hysteretic pinching is overestimated, especially at positive 

displacements. The axial load in wall B8 increases stresses normal to crack, thus decreasing shear slip and 

hysteretic pinching. Also, existence of confining steel causes larger axial strains in the boundary zones when 

compared to diagonal stresses in the web, resulting in flexure-dominated type of resisting mechanism.  

 

Fig. 8 –Lateral force-displacement response for PCA walls (adapted from Palermo 2003) 

4.3 SW walls 

SE walls were 600mm × 1200mm × 60mm rectangular specimens tested by Pilakoutas and Elnashai (1995). 

Walls SW4 and SW5 were selected for analysis. These walls had heavily reinforced boundary zones of varying 

length, mainly 110mm and 60mm for wall SW4 and SW5, respectively. Confining steel in form of rectangular 

hoops and cross ties was provided in the boundary regions for both specimens (Table 3). Due to the significant 

amount of flexural reinforcement in the boundary zones and the orthogonality of the cracks with respect to the 

latter, the average yield strength reduction as proposed by [2] was not applied. 
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Table 3 – PCA wall material and loading properties. 

Wall zone 
Tickness Concrete  x-steel y-steel 

t(mm) Ec(MPa) fc'(MPa) ρx(%) fxy(MPa) ρy(%) fyy(MPa) 

SW4-Web 60 35240 37.0 0.39 545 0.50 545 

SW4-Flanges 60 35240 37.0 0.79 545 6.86 470 

SW5-Web 60 27820 31.8 0.31 400 0.59 545 

SW5-Flanges 60 27820 31.8 0.31/0.66* 400 12.5 535 

          *In the bottom half of the boundary element 

 

The FE mesh consisted of 60 2 × 2 IP membrane elements, with 12 elements in each flange and 48 in the 

web region (Fig. 9). The top slab was modelled with 9 elements, while fixed boundary conditions were assumed 

at the bottom elements. The tensile concrete model was defined with the same parameters as for the PCA walls. 

In addition, in order to simulate the effect of confinement, the monotonic compressive envelope was modified to 

the Popovics envelope with a confinement factor of 1.5 for SW5 [9]. 

 

Fig. 9 – SW Walls mesh 

Lateral force-displacement loops are compared in Fig.10. The response for wall SW4 is characterized by 

yielding of flexural reinforcement, with several inelastic excursions beyond yield without significant loss of 

strength and stiffness. Wall SW5 experienced extensive crushing of concrete in the bottom elements, both in the 

boundary and web zones, with subsequent cycles beyond the peak compressive strain causing significant 

strength and stiffness degradation. Analytical results are in relatively good agreement, capturing overall strength, 

permanent displacements and hysteretic stiffness and strength degradation, although some underestimation of 

strength in the post-peak range can be observed. 
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Fig. 10 – Lateral force-displacement response for SW walls (adapted from Palermo 2003) 

4.4 Shear critical beams 

A set of 12 RC beams were tested by Bresler and Scordelis [3] in order to investigate shear failure of members 

with different levels of longitudinal and transverse reinforcement. All beams were simply supported and 

monotonically loaded at mid- span under force control. The distance between supports varied between 3660mm 

and 6400mm, while the beam depth was kept constant and equal to 552mm (Fig. 11). Bottom longitudinal 

reinforcement was provided for all specimens, while only some of the beams contained top longitudinal 

reinforcement and transverse shear reinforcement. All beams failed in brittle manner due to shear in the web 

region. 

 

Fig. 11 – Beam properties.  

Beams OA-1 and A-1 were selected for verification purposes. Tables 7 and 8 summarize beam properties and 

Fig. 12 shows the FE mesh configuration. Only half of the beam was modeled making use of symmetry 

conditions. The longitudinal reinforcement was smeared along a distance of 7.5 times the bar diameter in both 

directions, according to CEB-FIB. This resulted in some web elements in beam OA1 with no reinforcement at 

all.  
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Table 4 – Beam material and loading properties. 

Beam 
Width Concrete Reinforcement 

b(mm) εo(10
-3

) fc'(MPa) Bottom Top Stirrups 

OA1 305 1.8 22.6 4ϕ28 - - 

A1 305 1.8 24.1 4ϕ28 2ϕ12 ϕ6/210 

 

Fig. 12 compares the monotonic force-displacement response at mid-span. Also predictions using the Modified 

Compression Field Theory, reported in [19], are included. The experiment was done under force-control, hence 

only the pre-peak behavior was measured. The analysis agrees relatively well in terms of initial stiffness, peak 

load and maximum displacement for beam A1. For beam OA1 (with no shear reinforcement), some divergence 

can be noted in terms of post-cracking stiffness and maximum displacement. Failure was localized in the 

unreinforced web elements due to shear slip along the diagonal cracks. 

 

Fig. 12 – Force-displacement response for beam A-1 and OA1 (adapted from [19])  

5. Conclusions 

An analytical constitutive model for reinforced concrete in the tensile strain domain was presented. The model 

formulation followed the principles of mechanics, such as equilibrium, compatibility and constitutive relations. It 

was implemented into a membrane finite element and verified against a number of monotonic and cyclic tests on 

RC panels, shear critical beams and walls with aspect ratios less than 3. Promising results were obtained, even 

for beams with no shear reinforcement. Nevertheless, further verifications on more complex geometries and 

reinforcement configurations will be object of future research. 
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