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Abstract 
Reliability analysis aims at determining the probability of failure of a stochastic system and typically relies on 
purely numerical simulations. Nevertheless, trusting mathematical models up to failure can be questioned, 
especially for structural components characterized by a strongly nonlinear response. From this perspective, hybrid 
simulation is as a suitable candidate to replace pure numerical time-history analyses in the process of structural 
reliability assessment. Arguably, hybrid simulation suffers the same limitations as the large finite element models, 
making non-intrusive reliability methods based on metamodeling the most attractive solution strategy for hybrid 
simulation based reliability analysis. Along these lines, this paper explores a combination of an active learning 
reliability method based on Kriging metamodeling and hybrid simulation, which is used to provide the real 
structural response. A numerical validation of the proposed approach is presented for a nonlinear two-degrees-of-
freedom series system. The selected benchmark case study covers a wide class of structures whose response can 
be evaluated using hybrid simulation. 
 
Keywords: Hybrid Simulation, Kriging Metamodeling, Gaussian Process, Active Learning, Adaptive Experimental Design. 

1 Introduction 
Reliability Analysis (RA) aims to determine the probability of failure of a stochastic system. A performance 

function defines the system state, i.e. failure or not failure, in the overall probability space of the random input 
parameters. The probability integral over the failure domain corresponds to the probability of failure [1]. In the 
current practice, the probability of failure is estimated using pure numerical simulations, assuming that the 
behavior of the structure is well-known and correctly modeled up to failure, at least in a probabilistic sense. This 
assumption can be questioned, especially for structures with components characterized by a strongly nonlinear 
response and a lack of a reliable numerical model, namely in the presence of epistemic uncertainty [2]. From this 
perspective, hybrid simulation (HS) is a suitable candidate to replace pure numerical time-history response 
analyses in the process of structural RA.  

A hybrid model of the prototype structural system combines numerical and physical substructures (NSs and 
PSs). The PS of the hybrid model is tested in the laboratory precisely because of a lack of reliable mathematical 
models, while the NS is instantiated in structural analysis software. The dynamic response of the hybrid model is 
predicted using a time-stepping response history analysis. In a typical hybrid simulation, a computer-controlled 
system applies displacements to the PS using servo-hydraulic actuators and feeds back the corresponding restoring 
forces to the time integration algorithm where the next solution step is computed. When the response of the PS 
does not depend on the rate of loading, hybrid simulation can be performed at an extended time scale, typically 
50-200 times slower than the actual earthquake rate, requiring inertia and damping forces to be modeled 
numerically. This is the so-called Pseudodynamic (PsD) testing method that allows for improving the quality of 
the test by increasing the signal-to-noise ratio of response signals and reducing the control tracking error [3,4,5]. 
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Arguably, HS suffers the same limitations as those of large Finite Element (FE) models [6], as well as 
additional limitations associated with accuracy and duration of experimental testing. Therefore, crude Monte Carlo 
Simulation (MCS) is not affordable, making non-intrusive solution algorithms based on metamodeling the most 
appealing strategy for HS-based RA. From this perspective, this paper explores a combination of the active 
learning reliability method based on Kriging metamodeling [7,8] and HS, which is used to sample the limit state 
function and provide real structural response data near and at the limit state. An important objective is to minimize 
the size of the training set because each element involves physically tested, and possibly damaged, PSs. To this 
end, Sobol low-discrepancy sequences are selected to provide the initial pool of random input parameter samples, 
which fill the entire probability space [9]. Subsequent samples are selected after each HS to minimize the 
uncertainty of the limit state surface localization. After a predetermined number of iterations, the Kriging model 
is considered accurate enough to calculate probability of failure or quantile estimates using MCS. 

The paper outline follows. First, the Kriging metamodeling theory is presented. The active learning reliability 
method is illustrated afterwards. On this basis, a reliability method is derived that considers HS as a non-intrusive 
way of sampling the limit state function of the system being investigated. The resulting Adaptive Kriging HS 
reliability method, AK-HS hereinafter, is validated using a purely numerical analysis of a nonlinear two-degrees-
of-freedom (2-DOF) series system. The selected benchmark case study covers a wide class of structures whose 
response can be evaluated using hybrid simulation: the dynamic response of these structures is governed by a few 
response modes and a few localized nonlinearities. The stiffness parameters of the boundary springs in the 2-DOF 
series system, which belong to the NS, are selected as input random variables. A limit state function is defined 
with respect to the maximum absolute displacement achieved by the PS hysteretic spring. The sensitivity of the 
computed failure probability magnitude to the nonlinearity in the dynamic response is investigated considering a 
reasonable number of deterministic HS. Results, characterized by fast convergence of statistical estimates, are 
presented and discussed. 

2 Failure probability and quantile estimation 
Given a probabilistic model corresponding to an 𝑚𝑚-dimensional random vector 𝑿𝑿 with probability densitity 

function 𝑓𝑓𝑿𝑿 and a computational model ℳ, failure is defined as the event 𝐹𝐹 = �ℳ(𝑿𝑿) ≥ 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎� and the failure 
probability reads: 
 

𝑝𝑝𝑓𝑓 = ℙ��ℳ(𝑿𝑿) ≥ 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎�� = � 𝑓𝑓𝑿𝑿(𝒙𝒙)d𝒙𝒙
 

𝒟𝒟𝑓𝑓=�𝒙𝒙∈ℝ𝑚𝑚:ℳ(𝒙𝒙)≥𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎�
 (1) 

 
In the context of RA, the computational model ℳ represents the Limit State Function (LSF). Due to the generally 
complex shape of the failure domain 𝒟𝒟𝑓𝑓, the integration operation cannot be solved analytically. However, a 
numerical estimate of the failure probability can be obtained by Monte Carlo simulation (MCS). Given a large set 
of samples of the input vector 𝑿𝑿, denoted by 𝒮𝒮 = {𝒙𝒙1, …𝒙𝒙𝑛𝑛}, the failure probability reads: 
 

𝑝̂𝑝𝑓𝑓 =
1
𝑛𝑛
�𝕀𝕀ℳ(𝒙𝒙)≥𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎(𝒙𝒙𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 
(2) 

 
where 𝕀𝕀ℳ(𝒙𝒙)≥𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎  is the indicator failure function, which reads 𝕀𝕀 = 1 for 𝒙𝒙𝑖𝑖 ∈ 𝒟𝒟𝑓𝑓 and 0 otherwise. This equation 
transforms the reliability analysis into a classification problem, where only the distinction of safe and failure 
domain is of interest. 

A related problem is the estimation of quantiles 𝑞𝑞𝛼𝛼, which are defined as, 
 

ℙ(ℳ(𝑿𝑿) ≥ 𝑞𝑞𝛼𝛼) = 1 − 𝛼𝛼 (3) 
 
with 𝛼𝛼 ∈ ]0,1[. Assume again a large sample of the input vector 𝒮𝒮 and the corresponding response values 

𝑦𝑦𝑖𝑖. When ranking the response values in descending order such that 𝑦𝑦(1) ≥ 𝑦𝑦(2) ≥ ⋯ ≥ 𝑦𝑦(𝑛𝑛), a quantile can be 
estimated by: 
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𝑞𝑞�𝛼𝛼 = 𝑦𝑦⌊𝑛𝑛(1−𝛼𝛼)⌋, (4) 

 
Where ⌊𝑛𝑛(1 − 𝛼𝛼)⌋ is the largest integer smaller than 𝑛𝑛(1 − 𝛼𝛼). Again, this is a classification problem, where the 
failure domain is defined as 𝒟𝒟𝑓𝑓 = {𝒙𝒙:ℳ(𝒙𝒙) ≥ 𝑞𝑞𝛼𝛼}.  

However, the main drawback of these classification methods is that they rely on a large sample set 𝒮𝒮 to 
estimate accurately the quantity of interest. When the computational model ℳ is expensive to evaluate, such as in 
HS, the analysis becomes intractable. In order to make these analyses tractable, metamodels are introduced in the 
next section. 

3 Reliability assessment based on hybrid simulation and Kriging metamodeling 
3.1 Kriging basics 

Kriging is a meta-modelling technique that considers the computational model to be a realization of a 
Gaussian process [10]: 
 

ℳ� (𝒙𝒙) = 𝜷𝜷𝑇𝑇𝒇𝒇(𝒙𝒙) + 𝜎𝜎2𝑍𝑍(𝒙𝒙,𝜔𝜔), (5) 
 
where 𝒇𝒇(𝒙𝒙) = �𝑓𝑓1(𝒙𝒙), … ,𝑓𝑓𝑝𝑝(𝒙𝒙)� are regression functions, 𝜷𝜷 is a vector of coefficients, which compose the mean 
value of a Gaussian process. 𝜎𝜎2 is the corresponding variance. 𝑍𝑍(𝒙𝒙,𝜔𝜔) is a zero-mean, unit-variance, stationary 
Gaussian process, which is characterized by an autocorrelation function 𝑅𝑅(|𝒙𝒙 − 𝒙𝒙′|;𝝆𝝆) and its hyper-parameters 
𝝆𝝆. The Kriging model is trained with a set of realizations 𝓧𝓧 = �𝝌𝝌(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁� and the corresponding responses 
of the computational model 𝓨𝓨 = �𝒴𝒴(𝑖𝑖) = ℳ�𝝌𝝌(𝑖𝑖)�, 𝑖𝑖 = 1, … ,𝑁𝑁�, which together form the so-called Experimental 
Design (ED) {𝓧𝓧,𝓨𝓨}. Kriging parameters are obtained by generalized least-squared solution: 
 

𝜷𝜷(𝝆𝝆) = (𝐅𝐅𝑇𝑇𝐑𝐑−1𝐅𝐅)−1𝐅𝐅𝑇𝑇𝐑𝐑−1𝓨𝓨, (6) 
𝜎𝜎𝑦𝑦2(𝝆𝝆) = 1

𝑁𝑁
(𝓨𝓨− 𝐅𝐅𝜷𝜷)𝑇𝑇𝐑𝐑−1(𝓨𝓨− 𝐅𝐅𝜷𝜷), (7) 

 
where 𝐑𝐑𝑖𝑖𝑖𝑖 = 𝑅𝑅(|𝝌𝝌(𝑖𝑖) − 𝝌𝝌(𝑗𝑗)|;𝝆𝝆) is the correlation matrix and 𝐅𝐅𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑙𝑙(𝝌𝝌(𝑖𝑖)). In practice the correlation hyper-
parameters are unknown and their values shall be inferred by e.g. maximum likelihood estimation. 

Having determined the Kriging parameters, the prediction value of the computational model at a point 𝒙𝒙 ∈
𝒟𝒟𝑋𝑋 is a Gaussian variable with the following mean value and variance: 
 

𝜇𝜇𝑌𝑌�(𝒙𝒙) = 𝒇𝒇(𝒙𝒙)𝑇𝑇𝜷𝜷 + 𝒓𝒓(𝒙𝒙)𝑇𝑇𝐑𝐑−1(𝓨𝓨− 𝐅𝐅𝜷𝜷), (8) 
𝜎𝜎𝑌𝑌�(𝒙𝒙) = 𝜎𝜎𝑦𝑦2(1 − 𝒓𝒓(𝒙𝒙)𝑇𝑇𝐑𝐑−1𝒓𝒓(𝒙𝒙) + 𝒖𝒖(𝒙𝒙)𝑇𝑇(𝐅𝐅𝑇𝑇𝐑𝐑−1𝐅𝐅)−1𝒖𝒖(𝒙𝒙)), (9) 

 
where 𝑟𝑟𝑖𝑖(𝒙𝒙) = 𝑅𝑅��𝒙𝒙 − 𝝌𝝌(𝑖𝑖)�;𝝆𝝆� and 𝒖𝒖(𝒙𝒙) = 𝐅𝐅𝑇𝑇𝐑𝐑−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙). Based on the trained Kriging model, the failure 
probability and the quantiles can be estimated. 
 
3.2 Adaptive experimental design 

The trained Kriging model, produced by the above stated process, is capable of exactly reproducing the points 
in the ED set. Indeed, the Kriging metamodel is interpolating, meaning that 𝜇𝜇𝑌𝑌��𝝌𝝌(𝑖𝑖)� = ℳ�𝝌𝝌(𝑖𝑖)�, 𝑖𝑖 = 1, … ,𝑁𝑁, 
exactly. This, however, does not mean it is an optimal model to predict the failure probability or the quantiles as 
RA requires. According to Eq. (2), RA is clearly a classification problem where each sample is categorized either 
as failed or non-failed. The purpose of the Kriging metamodel is indeed to approximate accurately the limit stat 
surface, which separates failure and non-failure domains. Adaptively enriching the ED set in a guided way can 
improve the accuracy of the quantity the trained Kriging model is used to predict. The learning rule that is used to 
pick samples as trade-off between exploration (of the input probabilistic space) and exploitation (RA, in this case) 
plays a crucial role in this game [11]. In order to extend the scope of HS to RA, we followed the developments by 
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Echard et al. [7] and its extension to quantiles in Schöbi et al. [8], who defined a specific learning rule for 
classification problems. The main steps of an Adaptive Kriging (AK) algorithm are listed here: 

1) Generate a small initial ED by selecting realizations 𝓧𝓧 and computing the corresponding response 
values using the computational model 𝒴𝒴(𝑖𝑖) = ℳ�𝝌𝝌(𝑖𝑖)�. 

2) Train a Kriging model ℳ�  based on this ED.  
3) Generate a large set 𝒮𝒮 = {𝒙𝒙1, …𝒙𝒙𝑛𝑛} and predict the response values of ℳ� , i.e. 𝜇𝜇𝑌𝑌�(𝒙𝒙) and 𝜎𝜎𝑌𝑌�(𝒙𝒙). 
4) Estimate the quantity of interest. In the case of failure probabilities, the best estimate of the failure 

probability and a confidence interval is computed as: 
 

𝑃𝑃�𝑓𝑓 = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) ≥ 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎), (10) 
𝑃𝑃�𝑓𝑓− = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) − 2𝜎𝜎𝑌𝑌�(𝒙𝒙) ≥ 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎),     𝑃𝑃�𝑓𝑓+ = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) + 2𝜎𝜎𝑌𝑌�(𝒙𝒙) ≥ 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎). (11) 

 
In the case of quantile estimation, the best estimate of the quantile and a confidence interval are computed 
in an analogous way (using Eq. (3)): 

 
1 − 𝛼𝛼 = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) ≥ 𝑞𝑞�𝛼𝛼), (12) 

1 − 𝛼𝛼 = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) − 2𝜎𝜎𝑌𝑌�(𝒙𝒙) ≥ 𝑞𝑞�𝛼𝛼−),     1 − 𝛼𝛼 = ℙ(𝜇𝜇𝑌𝑌�(𝒙𝒙) + 2𝜎𝜎𝑌𝑌�(𝒙𝒙) ≥ 𝑞𝑞�𝛼𝛼+). (13) 
 

5) Check for convergence. In the case of failure probabilities, the convergence criterion is �𝑃𝑃�𝑓𝑓+ − 𝑃𝑃�𝑓𝑓−� 𝑃𝑃�𝑓𝑓� ≤
𝜖𝜖𝑃𝑃𝑓𝑓. In the case of quantiles, the corresponding convergence criterion is (𝑞𝑞�𝛼𝛼+ − 𝑞𝑞�𝛼𝛼−) 𝑠𝑠𝑠𝑠𝑠𝑠(𝑌𝑌)⁄ ≤ 𝜖𝜖𝑞𝑞𝛼𝛼. If it is 
not fulfilled, continue with step 6), otherwise stop here and return the last metamodel. Note that a value 
of 𝜖𝜖𝑃𝑃𝑓𝑓 = 𝜖𝜖𝑞𝑞𝛼𝛼 = 5% leads to accurate results at reasonable costs [8]. 

6) Enrich the ED by a single sample 𝒙𝒙∗ ∈ 𝒮𝒮 by maximizing the probability of misclassification. For failure 
probability estimation: 
 

𝒙𝒙∗ =  argmax
𝒙𝒙𝑖𝑖∈𝒮𝒮

Φ�−|𝜇𝜇𝑌𝑌�(𝒙𝒙) − 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎|/𝜎𝜎𝑌𝑌�(𝒙𝒙)�, (14) 

 
where Φ(⋅) is the CDF value of a standard Gaussian variable. For the case of quantile estimation, the 
probability of misclassification is maximized by: 
 

𝒙𝒙∗ =  argmax
𝒙𝒙𝑖𝑖∈𝒮𝒮

Φ�−|𝜇𝜇𝑌𝑌�(𝒙𝒙) − 𝑞𝑞�𝛼𝛼|/𝜎𝜎𝑌𝑌�(𝒙𝒙)�. (15) 

 
7) Compute the corresponding response value 𝑦𝑦∗ = ℳ(𝒙𝒙∗) of the computational model and add {𝒙𝒙∗,𝑦𝑦∗} to 

the ED. Return to step 2). 
 
After the termination of the iterative algorithm, estimate the failure probability or quantile with the last metamodel 
ℳ�  via MCS. As can be argued from Eqs. (14) and (15), best candidate samples lie either close to the boundary of 
the failure domain or where the variance of the metamodel is high. In both cases, the probability of 
misclassification tends to its upper bound, which is equal to 0.5. 
 
3.3 Description of the proposed reliability method 

The reliability method proposed in this paper combines AK metamodeling and HS to evaluate the statistics 
that are related to the hybrid system response e.g., failure probabilities and quantiles. In detail, for a given sample 
𝝌𝝌(𝑖𝑖) of the random input parameter vector, HS replaces a purely computational model to provide the corresponding 
response quantity 𝒴𝒴(𝑖𝑖) = ℳ�𝝌𝝌(𝑖𝑖)�. Arguably, the maximum number of laboratory experiments limits the size of 
the ED, which must be set beforehand. In order to cope with this constraint, the original AK procedure of Schöbi 
and co-workers [8], described in Subsection 3.2, is slightly adjusted. The steps of the resulting AK-HS reliability 
method are: 
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1) Run the initial pool of HSs to generate the starting ED {𝓧𝓧,𝓨𝓨} with 𝒴𝒴(𝑖𝑖) = ℳ�𝝌𝝌(𝑖𝑖)�. 
2) Train a Kriging model ℳ�  based on the starting ED. 
3) Generate a large set 𝒮𝒮 = {𝒙𝒙1, …𝒙𝒙𝑛𝑛} and predict the response values of ℳ� , i.e. 𝜇𝜇𝑌𝑌�(𝒙𝒙) and 𝜎𝜎𝑌𝑌�(𝒙𝒙). 
4) Enrich the ED by picking the sample 𝒙𝒙∗ ∈ 𝒮𝒮 that maximizes the probability of misclassification according 

to Eqs. (14-15). 
5) Run the corresponding HS, which extends the ED to include the response pair {𝒙𝒙∗,𝑦𝑦∗}. 
6) Train a Kriging model ℳ�  based on the last ED. 
7) Loop between 3) and 6) for a pre-determined number of iterations. 
8) Estimate the statistics of interest via MCS on the last Kriging metamodel according to Eqs. (10-13). 

 
In order to probe the overall probability space, a Sobol sequence [9] provides the starting ED input 𝓧𝓧 while 

corresponding HSs provide the ED output 𝓨𝓨. It is noteworthy that the ED follows probabilistic distributions of 
input parameters whereas the Kriging metamodel works in a standard normal space. Accordingly, a proper iso-
probabilistic transformation must be performed on input quantities beforehand. It must be stressed that the 
proposed method is conceived for a peculiar class of hybrid systems whose dynamic response is governed by a 
few modes and a few lumped nonlinearities, which are typically confined to the PS. As will be shown in the 
following, these conditions systematically ensure a stable and almost un-biased estimates of both failure 
probabilities and quantiles with circa 30 HS. However, a significant dispersion of the corresponding confidence 
bounds is observed, which makes the original convergence check foreseen by Schöbi and co-workers [8] too strict 
to be satisfied in a reasonable number of HS experiments. This motivate our choice to establish the number of 
iterations, i.e. the number of HS tests, a priori, according to available resources. 

4 Numerical validation of the active learning reliability method 
4.1 Description of the reference case study 
A numerical benchmark study is presented in the following to support the validation of the proposed RA method. 
A nonlinear 2-DOF series system is shown in Figure 1. The spring connecting the two masses is assumed to 
respond inelastically and represents the PS. The two masses of the system and the springs that connect them to the 
fixed supports are the NSs of the hybrid model. It is assumed that the support springs are elastic and linear. The 
PS spring would be tested in a laboratory, but in this study, its force-deformation response is modeled numerically 
using a displacement-driven Bouc-Wen model [12]. 
 

 
Fig. 1 - Nonlinear 2-DOF series system subjected to ground motion excitation. 

 
The equations of motion of the hybrid model are: 
 

𝑢̇𝑢1 = 𝑣𝑣1 
𝑢̇𝑢2 = 𝑣𝑣2 

𝑣̇𝑣1 = 𝑚𝑚1
−1�𝑚𝑚1𝑎𝑎𝑔𝑔(𝑡𝑡) + 𝑟𝑟 − 𝑘𝑘1𝑢𝑢1 − 𝑐𝑐11𝑣𝑣1 − 𝑐𝑐12𝑣𝑣2� 

𝑣̇𝑣2 = 𝑚𝑚2
−1�𝑚𝑚2𝑎𝑎𝑔𝑔(𝑡𝑡) − 𝑟𝑟 − 𝑘𝑘3𝑢𝑢2 − 𝑐𝑐21𝑣𝑣1 − 𝑐𝑐22𝑣𝑣2� 

𝑟̇𝑟 = �𝐴𝐴 − �𝛽𝛽sign�(𝑣𝑣2 − 𝑣𝑣1)𝑟𝑟� + 𝛾𝛾�|𝑟𝑟|𝑛𝑛�(𝑣𝑣2 − 𝑣𝑣1) 

(16) 
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where 𝑟𝑟 represents the nonlinear restoring force of the PS, 𝑢𝑢 and 𝑣𝑣 stand for displacement and velocity while 𝑚𝑚, 𝑐𝑐 
and 𝑘𝑘 are mass, damping and stiffness parameters; 𝑎𝑎𝑔𝑔(𝑡𝑡) is the acceleration history of the selected earthquake 
excitation. A uniform modal damping 𝜁𝜁 was assumed for the calculation of the damping matrix. The reference 
values of the parameters of the 2-DOF series hybrid model are (referring to Figure 1 and Eq. (16)): 
 

𝑚𝑚1 = 8𝑒𝑒3 𝑘𝑘𝑘𝑘,𝑚𝑚2 = 9𝑒𝑒3 𝑘𝑘𝑘𝑘,𝑘𝑘1 = 4𝑒𝑒5
𝑁𝑁
𝑚𝑚

,𝑘𝑘3 = 1𝑒𝑒6
𝑁𝑁
𝑚𝑚

,  

𝐴𝐴 = 5𝑒𝑒5
𝑁𝑁
𝑚𝑚

,𝛽𝛽 = 25, 𝛾𝛾 = 12.5,𝑛𝑛 = 1, 𝜁𝜁 = 0.04 
 
The undamped eigenfrequencies of the 2-DOF hybrid model linearized about the initial (undeformed) 
configuration are 1.376 Hz and 2.275 Hz (i.e. the vibration mode periods are 0.727 s and 0.440 s). An accelerogram 
of the 1989 Loma Prieta earthquake recorded from the UCSC station [13] was selected as the reference ground 
motion acceleration signal. In order to observe the effects of an increasingly nonlinear response of the PS, the 
same reference signal was scaled to three different Peak Ground Acceleration (PGA) values. In detail, PGA1 =
 1.00 𝑚𝑚 𝑠𝑠2⁄ , PGA2 =  5.00  𝑚𝑚 𝑠𝑠2⁄  and PGA3 =  10.00 𝑚𝑚 𝑠𝑠2⁄  were chosen to provide a linear, a slightly 
nonlinear and a strongly nonlinear system response, respectively. Figure 2 depicts the un-scaled Loma Prieta 
accelerogram (PGA𝑟𝑟𝑒𝑒𝑓𝑓 =  4.28  𝑚𝑚 𝑠𝑠2⁄ ) while Figure 3 compares the related response spectra after scaling to the 
selected PGA values. 
 

  
Fig. 2 - Selected Loma Prieta earthquake acceleration 

record (PGA𝑟𝑟𝑟𝑟𝑟𝑟 =  4.28  𝑚𝑚 𝑠𝑠2⁄ ). 
Fig. 3 - Acceleration response spectra for the selected 

Loma Prieta earthquake record scaled to the three 
PGA values. 

 
With reference to Figure 3, dashed red lines indicate the 2-DOF hybrid model periods. Provided that (𝛽𝛽 + 𝛾𝛾) > 0, 
the inelastic restoring force limit attained by the Bouc-Wen spring is: 
 

𝑟𝑟𝑦𝑦 = �
𝐴𝐴

𝛽𝛽 + 𝛾𝛾
�
1
𝑛𝑛

 (17) 

 
Arguably, the ratio between the maximum absolute restoring force of the Bouc-Wen spring and its inelastic force 
limit 𝑟𝑟𝑦𝑦, namely the normalized restoring force peak, is a reliable indicator of the expected degree of nonlinearity 
of the system response. Accordingly, it was used to check the calibration of PGA scaling values. In this respect, 
Table 1 reports normalized restoring force peaks for the selected PGA levels while Figure 4 shows the hysteretic 
responses of the PS of the 2-DOF hybrid model for the three different levels of excitation. 
 

Table 1 - Normalized peak restoring force. 
 PGA [𝑚𝑚 𝑠𝑠2⁄ ] 
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max
𝑡𝑡

|𝑟𝑟(𝑡𝑡)|
𝑟𝑟𝑦𝑦

 0.114 0.477 0.774 

 
 

   
(a) (b) (c) 

Fig. 4 - Hysteretic responses of the PS of the 2-DOF hybrid model with mean parameter values for: a) 
PGA1 =  1.00 𝑚𝑚 𝑠𝑠2⁄ ; b) PGA2 =  5.00  𝑚𝑚 𝑠𝑠2⁄ ; c) PGA3 =  10.00 𝑚𝑚 𝑠𝑠2⁄ . 

Red dashed lines indicate the inelastic force limits 𝑟𝑟𝑦𝑦. 
 
Dynamics responses depicted in Figure 4 were computed by solving Eq. (15) considering the reference values of 
the system parameters using the ode15s Matlab solver. 
 
4.2 Reliability analysis setting 
The 2-DOF system is assumed to fail when the elongation of the inelastic spring (the PS) exceeds a limit. Thus 
the model ℳ(𝑿𝑿) is defined to compute this maximum absolute elongation as a function of the 2-DOF system mass 
displacements obtained via HS: 
 

ℳ(𝑿𝑿) = max
𝑡𝑡

|𝑢𝑢2(𝑿𝑿, 𝑡𝑡) − 𝑢𝑢1(𝑿𝑿, 𝑡𝑡)| (18) 

 
where the random vector 𝑿𝑿 gathers the NS spring stiffness parameters 𝑘𝑘1 and 𝑘𝑘3. Each random parameter was 
assumed to have a uniform distribution with predefined values of the finite support, mean and variance, as 
summarized in Table 2. 
 

Table 2: Definition of random input parameters (linear elastic spring stiffnesses). 
 min[𝑋𝑋] max[𝑋𝑋] 𝜇𝜇[𝑋𝑋] 𝜎𝜎[𝑋𝑋] 𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋] 

𝑘𝑘1(𝑁𝑁/𝑚𝑚) 2e5 6e5 4e5 1.155e5 0.289 
𝑘𝑘3(𝑁𝑁/𝑚𝑚) 5e5 1.5e6 1e6 2.887e5 0.289 

 
As reported in Table 2, mean values of distributions coincide with corresponding reference parameters. A two-
dimensional Sobol sequence was used to generate 20,000 pseudo-random samples of the input variables. For each 
excitation level, the admissible displacement threshold 𝑦𝑦adm was determined according to Eq. (2-3) via MCS by 
selecting a target probability of failure, as shown in Table 3. As a result, the same dataset was used to benchmark 
the performance of the AK-HS reliability method in estimating both failure probabilities and quantiles. 
 

Table 3 - Admissible displacements 𝑦𝑦adm for different PGA levels and selected probabilities of failure. 
  Probability of failure 
  𝑝𝑝𝑓𝑓 = 0.20 𝑝𝑝𝑓𝑓 = 0.10 𝑝𝑝𝑓𝑓 = 0.05 𝑝𝑝𝑓𝑓 = 0.02 𝑝𝑝𝑓𝑓 = 0.01 

𝑃𝑃𝑃𝑃𝑃𝑃 
[𝑚𝑚 𝑠𝑠2⁄ ] 

1 0.0051 0.0057 0.0059 0.0062 0.0063 
5 0.0254 0.0277 0.0287 0.0300 0.0311 
10 0.0521 0.0576 0.0645 0.0698 0.0719 
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Table 4 summarizes the accuracy of the failure probability estimates, which is measured using the theoretical 
coefficient of variation for the 20,000 Monte Carlo samplings, shown in Eq. (19). 
 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑓𝑓� = �
1 − 𝑝̂𝑝𝑓𝑓
𝑛𝑛𝑀𝑀𝑀𝑀 ∙ 𝑝̂𝑝𝑓𝑓

 (19) 

 
Table 4 - Accuracy of failure probability estimates. 

 Probability of failure 
 𝑝𝑝𝑓𝑓 = 0.20 𝑝𝑝𝑓𝑓 = 0.10 𝑝𝑝𝑓𝑓 = 0.05 𝑝𝑝𝑓𝑓 = 0.02 𝑝𝑝𝑓𝑓 = 0.01 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑓𝑓� 0.014 0.021 0.031 0.049 0.070 
 
4.3 Reliability analysis results 

This subsection discusses the results of the numerical validation of the AK-HS reliability method. In this 
context and in this study, a single numerical solution of Eq. (16) replaces a single HS run that involves a new PS. 
With this in mind, the number of HSs must be as small as possible because each run involves a test of the PS in 
the laboratory and, thus, adds significantly to the costs and effort. Therefore, the size of the starting ED was set to 
12 samples while its maximum size was limited to 32 samples, i.e. 32 HSs. According to previous studies [14] 
conducted on the same benchmark 2-DOF hybrid system and focusing on Uncertainty Propagation (UP) and 
Global Sensitivity Analysis (GSA) based on Polynomial Chaos Expansion (PCE), this was sufficient to provide 
accurate estimates of statistical moments and Sobol' indices of output quantities in the case of three input random 
parameters. The Kriging metamodels were estimated using the UQLab software framework developed by the Chair 
of Risk, Safety and Uncertainty Quantification in ETH Zurich [15] using the Structural Reliability module [16]. 
Figure 5 provides an overview of the learning process underlying the AK-HS reliability method for the case with 
𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑚𝑚 𝑠𝑠2⁄  and 𝑝𝑝𝑓𝑓 = 10%. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5 - Overview of the failure domain estimation process for the case of 𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑚𝑚 𝑠𝑠2⁄  and 𝑝𝑝𝑓𝑓 = 0.10 
based on: (a) 12 samples (initial training dataset); (b) 17 samples; (c) 22 samples; (d) 27 samples; (e) 32 
samples; and compared to the reference MCS (f). The estimated failure domain is depicted in yellow; the 
circular dots represent the initial ED set, the diamonds represents the additional samples selected by the 

learning function, and the cross dots indicate the best suited sample for the next HS. 
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As seen in Figure 5a, the initial pool of 12 samples outlines a rough approximation of the actual failure domain, 
which is refined by the learning process (Figures 5, b-c-d-e). In detail, in each iteration, the learning function 
locates the next best-suited sample, represented by a cross dot, on the estimated boundary of the failure domain, 
where the probability of misclassification is the highest. After 20 iterations, the AK-HS reliability method provides 
a good approximation of the reference failure domain calculated via MCS as depicted in Figure 5f. In order to 
quantify the performance of the AK-HS reliability method, the following scores are introduced: 
 

• 𝜌𝜌𝑝𝑝�𝑓𝑓 = �𝑝𝑝𝑓𝑓−𝑝𝑝�𝑓𝑓�
𝑝𝑝𝑓𝑓

: Normalized Error of failure Probability Estimate (NEPE); 

• 𝜌𝜌𝑞𝑞�𝛼𝛼 = |𝑞𝑞𝛼𝛼−𝑞𝑞�𝛼𝛼|
𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦) : Normalized Error of Quantile Estimate (NEQE); 

• 𝜀𝜀𝑝𝑝�𝑓𝑓 =
𝑝𝑝�𝑓𝑓
+−𝑝𝑝�𝑓𝑓

−

𝑝𝑝�𝑓𝑓
:  Normalized Dispersion of failure Probability Estimate (NDPE); 

• 𝜀𝜀𝑞𝑞�𝛼𝛼 = 𝑞𝑞�𝛼𝛼+−𝑞𝑞�𝛼𝛼−

𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦):  Normalized Dispersion of Quantile Estimate (NDQE); 
 
where 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦) represents the standard deviation of the 2-DOF hybrid model response with respect to the overall 
input probability space. All scores refer to final estimates, that is, after 32 HSs. Tables 5a and 5b summarize NEPE 
and NEQE scores for the investigated values of failure probability and excitation levels. Analogously, Table 6a 
and 6b summarizes NDPE and NDQE scores.  
 

Table 5a - NEPE 𝜌𝜌𝑝𝑝�𝑓𝑓  scores. 
  Probability of failure 𝑝𝑝𝑓𝑓 
  0.20 0.10 0.05 0.02 0.01 

𝑃𝑃𝑃𝑃𝑃𝑃 
[𝑚𝑚 𝑠𝑠2⁄ ] 

1 0.105 0.031 0.051 0.017 0.040 
5 0.010 0.038 0.036 0.017 0.184 
10 0.012 0.050 0.016 0.030 0.080 

 

Table 5b - NEQE 𝜌𝜌𝑞𝑞�𝛼𝛼 scores. 
  Probability of failure 𝑝𝑝𝑓𝑓 
  0.20 0.10 0.05 0.02 0.01 

𝑃𝑃𝑃𝑃𝑃𝑃 
[𝑚𝑚 𝑠𝑠2⁄ ] 

1 0.082 0.012 0.006 0.002 0.002 
5 0.007 0.010 0.007 0.004 0.036 
10 0.006 0.024 0.008 0.006 0.012 

 

 
Table 6a - NDPE 𝜀𝜀𝑝𝑝�𝑓𝑓scores. 

  Probability of failure 𝑝𝑝𝑓𝑓 
  0.20 0.10 0.05 0.02 0.01 

𝑃𝑃𝑃𝑃𝑃𝑃 
[𝑚𝑚 𝑠𝑠2⁄ ] 

1 0.466 1.269 0.289 2.317 8.468 
5 1.027 0.803 0.616 1.681 63.542 
10 1.185 0.501 2.078 0.312 13.517 

 

Table 6b - NDQE 𝜀𝜀𝑞𝑞�𝛼𝛼scores. 
  Probability of failure 𝑝𝑝𝑓𝑓 
  0.20 0.10 0.05 0.02 0.01 

𝑃𝑃𝑃𝑃𝑃𝑃 
[𝑚𝑚 𝑠𝑠2⁄ ] 

1 0.300 0.214 0.026 0.186 0.361 
5 0.354 0.138 0.074 0.152 5.959 
10 0.462 0.187 0.529 0.050 1.213 

 

 
In particular, NEPE and NEQE scores highlight the presence of bias in statistic estimates. The results shown 

in Table 5a and 5b are quite promising: NEPE and NEQE scores indicate that failure probability and quantile 
estimates, respectively, have small errors and are almost un-biased for all cases. It is important to remember that 
investigated quantiles and failure probabilities are complementary, that is, 𝑞𝑞𝛼𝛼 = 𝑦𝑦adm and 𝛼𝛼 = 𝑝𝑝𝑓𝑓. As a result, the 
same dataset and Kriging metamodels were used to benchmark the AK-HS reliability method in providing 
estimates of both the probability of failure and the quantiles.  

Dispersion-related NDPE and NDQE scores indicate the width of the confidence intervals. As reported in 
Table 6a and 6b, the width of confidence bounds remains relatively large for both failure probabilities and 
quantiles. In addition, the two scores do not show any stable trend with respect to the explored grid of parameters.  

A careful reader can notice that all scores tend to show higher values in the case of 𝑃𝑃𝑃𝑃𝑃𝑃 = 5𝑚𝑚 𝑠𝑠2⁄  and 
𝑝𝑝𝑓𝑓 = 0.01. In our opinion, such outliers potentially hide a threshold behavior of the system response with respect 
to input parameters. In particular, this excitation level is supposed to produce a slightly nonlinear system response 
when mean values of parameters are selected. A more pronounced either linear or nonlinear behavior could be 
observed in different regions of the parameter space, thus making the overall limit state surface sharper owing to 
transition zones. Figure 6 offers a close-up view of the trend of the failure probability estimates in the case of 𝑝𝑝𝑓𝑓 =
10%. 
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(a) (b) (c) 

Fig. 6 - Trends of failure probability estimates in the case of 𝑝𝑝𝑓𝑓 = 0.10 and: (a) 𝑃𝑃𝑃𝑃𝑃𝑃 = 1𝑚𝑚 𝑠𝑠2⁄ ; (b) 𝑃𝑃𝑃𝑃𝑃𝑃 = 5𝑚𝑚 𝑠𝑠2⁄ ; (c) 
𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑚𝑚 𝑠𝑠2⁄ . 

 
As shown in Figure 6, convergence is achieved with less than 32 HSs in all cases. However, the confidence 

bounds keep oscillating without any evident trend. Analogously, Figure 7 offers a close-up view of the trend of 
quantile estimates in the case of 𝑝𝑝𝑓𝑓 = 10%. 
 

   
(a) (b) (c) 

Fig. 7 - Trends of quantile estimates in the case of 𝑝𝑝𝑓𝑓 = 0.10 and: (a) 𝑃𝑃𝑃𝑃𝑃𝑃 = 1𝑚𝑚 𝑠𝑠2⁄ ; (b) 𝑃𝑃𝑃𝑃𝑃𝑃 = 5𝑚𝑚 𝑠𝑠2⁄ ; (c) 𝑃𝑃𝑃𝑃𝑃𝑃 =
10𝑚𝑚 𝑠𝑠2⁄ . 

 
In this particular case, apparently, the starting ED is sufficient to provide reliable estimates of the quantile 

and the confidence bounds are narrows. Even though this is, most likely, a fortuitous occurrence, such result 
corroborates the effectiveness of the proposed AK-HS reliability method. 
 
5 Conclusions 
Reliability analysis aims to determine the probability of failure of a stochastic system and typically relies on purely 
numerical simulations. Nevertheless, thrusting mathematical models up to failure can be questioned, especially for 
structural components characterized by strongly nonlinear response. In this paper, hybrid simulation is presented 
as suitable alternative to evaluate the structural system response for the purpose of RA, thus reducing dramatically 
the amount of epistemic uncertainty. Since HS suffers the same limitations as the large FE models, the proposed 
procedure relies on non-intrusive Kriging metamodeling. An initial pool of samples is selected to cover the entire 
probability space of input random parameters and the corresponding initial HS provide the model response. A 
learning function dictates the sample parameters for the following HSs to minimize the uncertainty in the 
localization of the failure domain, which is predicted by a Kriging metamodel. Probability of failure and quantile 
estimates are calculated using the last Kriging metamodel via MCS. The benchmark validation of the resulting 
AK-HS reliability method is presented for a 2-DOF spring series system with one inelastic spring modeled as the 
PS and the other two elastic springs modeled as the NSs of a hybrid model. The benchmark example proves that 
fewer than 32 HSs are sufficient to accurately model the reliability of systems in this class of complexity with 
target failure probabilities as low as 1%. While still large, this number of experiments is not uncommon in quasi-
static cyclic test campaigns aimed at characterizing response of structural elements [17]. Future work is aimed at 
incorporating RA methods into guidelines for conducting HS experimental campaigns. 
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