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Abstract 
Buckling-restrained braces (BRBs), developed in the late 1980’s in Japan, are now widely used as ductile seismic-resistant 
and energy dissipating structural members in seismic regions such as the US, Taiwan, China and NZ. They are expected to 
exhibit stable hysteresis when subjected to in-plane cyclic axial loading, as described in the seismic provisions of AIJ 2009 
and AISC 341. However, several recent studies have highlighted the risk of global BRB buckling induced by plastic hinging 
at the restrainer end prior to core yielding and subsequent connection instability. Various equations evaluating this stability 
limit have been proposed, but the relationship among these criteria is not clear. This paper reviews and compares these 
equations, introduces a unified concept and proposes a simplified approach for practical design. 
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1. Introduction 
Buckling-restrained braces (BRBs) developed in the late 1980’s in Japan [1], are now widely used as ductile 
seismic-resistant and energy dissipating structural members in seismic regions around the world. They are 
expected to exhibit stable hysteresis when subjected to cyclic axial loading, as described in the seismic 
provisions of AIJ 2009, 2012 [2,3] and AISC 341 [4]. However, several recent studies have highlighted the risk 
of global BRB buckling induced by plastic hinging at the restrainer end prior to core yielding and subsequent 
connection instability (Fig.1). Wigle et al. [6] discussed the effect of connections on BRB performance, and Lin, 
Tsai et al. [7] reported the phenomenon of global buckling related to connection failure in BRB frame tests. To 
account for this mechanism, various stability limit criteria have been proposed. Tsai, Nakamura et al. [8]  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Global buckling of BRB      (a) Bolted connection[6]  (b) Welded connection[7] (c) Pinned connection[8] 

including connections                                     Fig. 3 – Typical BRB’s connections 

Fig. 2 – Typical BRB sections 
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suggested evaluating BRB connection buckling strength by Euler buckling, taking the equivalent length as twice 
the connection length.  However, the theoretical basis is not clearly explained. Koetaka et al. [9] discussed the 
conditions under which bending-moment transfer capacity at the restrainer ends is lost, assuming full fixity at the 
gusset base. Okazaki, Hikino et al. [10] proposed simplified criteria using the same assumptions as Koetaka et al. 
Takeuchi et al. [11] discussed the stability requirements for BRBs including the effects of bending-moment 
transfer capacity at the restrainer ends, connection zone flexural stiffness, gusset and adjacent framing rotational 
stiffness, and out-of-plane drift due to the transverse component of ground motion.  A simple set of equations 
was proposed for both the one-way configuration with symmetric boundary conditions and the chevron 
configuration [12].  This paper reviews and compares these equations and proposes a simplified approach for 
practical design. 

2. BRB configurations 
Various BRB cross sections are shown in Fig.2, and some typical connections are shown in Fig.3. Bolted 
connections are commonly used to enable braces to be replaced following a severe earthquake. Welded 
connections produce a compact connection, while pinned connections are used to avoid bending moment transfer. 
In pinned connections, tight tolerances and precise alignment between the pin and hole is required to avoid slack 
and the resultant pinched hysteresis shape. Although bolted connections are easily replaceable, global stability 
tends to become the governing design criteria.  

Common gusset plate types used for BRB connections are shown in Fig.4. Type A is popular in the US and 
NZ, but out-of-plane stiffness is low. Those with full depth stiffeners, Types B and C, are used in Japan, and 
produce relatively high out-of-plane stiffness. Typical BRB framing configurations are shown in Fig. 5, 
including the (a) one-way configuration with symmetry boundary conditions and (b) chevron configuration with 
a reduced out-of-plane stiffness at the upper (beam) end. 

 
Fig. 4 – Gusset plate types and out-of-plane stiffness[11] 

  
(a) One-way           (b) Chevron 

Fig. 5 – BRB configurations in frame[9] 

3. Tsai and Nakamura’s proposal (2002) 
One of the earliest design criteria for out-of-plane stability was proposed by Tsai, Nakamura et al. [8], designing 
the connection for Euler buckling and taking an equivalent length of twice the restrainer end to beam/column 
centroid length as shown in Fig.6. This method is introduced in the text by Bruneau et al. [13]. It assumes the 

Type A Type B Type C 
(a) low stiffness (b) high stiffness 

Part of connection 
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gusset plate ends to be rotationally rigid and the restrainer end to be a pin, idealizing the connection as a 
cantilever. However, neither a rigorous theoretical basis, nor detailed explanation is provided. 

 
Fig. 6 – Tsai and Nakamura’s proposal[8] 

4. Koetaka and Inoue’s proposal (2008) 
Koetaka, Kinoshita, Inoue et al. [9] discussed stability conditions for a BRB in the chevron configuration, 
including a rotational and horizontal sway spring at the upper (beam) connection as shown in Fig.7. In this 
model, bending-moment transfer capacity at the restrainer ends is lost and modelled as pin, while the lower 
gusset plate end is estimated as rotationally rigid. rJEIB is the bending stiffness at connections, taken as a 
percentage of the restrainer flexural stiffness in the direction under consideration and defined in [9]. 

 
Fig. 7 – Koetaka and Inoue’s model[9] 

 
The stability limit is defined as a combination of sway and rotational buckling at the upper (beam) 

connection. When the upper connection is braced by a fixed secondary beam or by fly bracing and slab, both the 
rotational and horizontal springs, KR and KH, respectively, are large and the elastic buckling strength is defined by: 
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When a perpendicular secondary beam restrains the sway component, but offers insufficient rotational stiffness 
KR to provide full restraint, the stability limit is evaluated by: 
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where aN, an amplitude factor accounting for geometrical nonlinearity, is defined as aN=1/(1-Nmax/NJ
E). When 

this effect is negligible, aN approaches 1, and Eq. (2) reduces to Eq. (3), referring to Fig. 9 for the definition of 
connection length proportions ξ1 and ξ2, and brace length L0. 

1 2
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L
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− −
= ⋅
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5. Hikino and Okazaki’s proposal (2013) 
Hikino, Okazaki, et al. [10] discussed stability conditions of a BRB with similar boundary conditions as Koetaka 
et al. [9], but modelled the restrainer and connection components shown in Fig.7 (b) as rigid bodies.  This model 
also assumes a pin at the restrainer ends, and full fixity for the lower gusset. For the case of a perpendicular 
member offering significant horizontal stiffness, KH, the proposed equation becomes equivalent to Eq. (3). 
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6. Takeuchi’s proposal (2013) 
Takeuchi, et al. [11] proposed stability conditions including moment-transfer capacity at the restrainer ends, 

Mp
r, and residual moment at the restrainer ends, M0

r, introduced by out-of-plane drift estimated from the 
maximum design story drift.  Moment-transfer capacity at the restrainer ends is governed by failure of the 
restrainer or plastic hinge formation in the neck as shown in Fig.8. Note that the neck hinging mode would also 
be appropriate when a collar is provided of sufficient overlap and thickness to avoid hinging in the overlap zone. 
When a hinge forms in the neck, Mp

r becomes a function of axial stress.  This initial study assumed stiffness of 
the connection zones, gussets and adjacent framing are the same at both ends, generally applicable for the one-
way configuration. 

The potential collapse mechanisms shown in Fig. 9(a) were checked.  These assume elastic rotational springs 
at the gusset plate ends, with the stability limit axial force, Nlim1, required to exceed the maximum compressive 
force of the core member, Ncu: 
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Here, Mp

r denotes the moment transfer capacity at the restrainer end and M0
r denotes the initial bending moment at 

the restrainer ends produced by out-of-plane drift.  If M0
r exceeds Mp

r, (Mp
r - M0

r) is taken as zero (ie no moment 
transfer). ar denotes the initial imperfection at the restrainer ends and is estimated as ar=at+e+sr+(2sr/Lin)ξL0 
(Fig. 10). Ncr

B denotes the global elastic buckling strength, including the effects of the connection flexural stiffness, 
and gusset and adjacent framing rotational stiffness. 

Ncr
r is the connection buckling strength, where the bending-moment transfer capacity at the restrainer ends is 

neglected (ie cantilever buckling). Note that in the elastic range with fixed end rotations, this value can be 
estimated by cantilever Euler buckling N 

r
cr=π2γJEIB/(2ξL0)2, but that generally the base fixity has a finite spring 

stiffness. The governing mode is typically the asymmetric mode, which when including the effects of the rotational 
end springs can be expressed as: 
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where ξL0 is the connection length (distance from end of restrainer to column/beam flange) and ξκRg is the 
normalized rotational stiffness of the connection outer ends, incorporating both the adjacent framing rotational 
stiffness (which depends on the brace angle), and additional rotational stiffness of the gusset due to supplementary 
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Fig. 8 – Moment transfer capacity at restrainer end[11] 

   
(a) Elastic spring at Gusset (Nlim1)          (b) Plastic hinge at Gusset (Nlim2) 
Fig. 9 – Collapse mechanisms assumed by Takeuchi[11] 

 
stiffeners and weld configuration: 
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KRg is the rotational stiffness of the gusset plate. In the elasto-plastic range, Ncr
r can be evaluated by substituting 

the equivalent slenderness ratio, given in Equation (8), into the various elasto-plastic design column curves. 
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Here, ic is the radius of gyration in the connection zone.  

Note that Eq. (5) reduces to simple cantilever buckling (Nlim1=Ncr
r) if there is no moment transfer, (Mp

r - M0
r)→0. 

Likewise, Eq. (5) reduces to global pin-pin elastic buckling (Nlim1=Ncr
B) if there is full restrainer moment 

continuity, Mp
r→∞, and low gusset/adjacent framing rotational stiffness, γJEIB→0, which produces Ncr

r→0. 
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(a) Stable (Ncu < stability limit)             (b) Unstable (Ncu > stability limit) 
Fig. 10 Initial imperfection                                         Fig.11 Stability concepts and limits 
 

Similar to Eq. (5), but assuming that plastic hinges also form at the gusset plates as shown in Fig. 9(b), the 
expected limit axial force, Nlim2, is proposed as follows. 
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where Mp
g is the plastic bending strength of the gusset plate including the axial force effect. [(1-2ξ)Mp

g - M0
 r] or 

[Mp
r – M0

r] should be taken as zero if the difference is negative.  
The smaller of the two limit forces obtained from Equations (5) and (9) becomes the limiting axial force, Nlim, 

and the BRB is considered to be stable where Nlim is larger than the maximum compressive force of the core, 
Ncu. These equations have been derived from the intersection of the elastic buckling path and ultimate strength 
curve as shown in Fig.11. The elastic buckling path can be defined as follows:  
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where yr denotes out-of-plane deformation at restrainer ends.  

For the chevron configuration, the upper beam connection is far less stiff than the lower beam/column 
connection.  The above equations are only applicable for symmetric stiffness conditions, where the connection 
length ratio, ξ, and the normalized rotational stiffness, ξκRg, are the same at both ends.  The upper beam loses 
stiffness due to both decreased rotational restraint, relying more on the torsional rotation of the connected beam, 
and increased connection length. The length of the upper connection, ξ2L0, is measured from the beam centroid, 
while the rotational stiffness is expressed by the following Equation (11). 
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Here, KRb is the rotational stiffness of the beam about the brace major axis with the brace bending in the out-of-
plane direction, and K’Rg2 is the rotational stiffness of the upper gusset plate. When the rotational stiffness of the 
lower gusset plate at the column–beam joint is defined as KRg1, the normalized rotational stiffness at both ends 
can be defined as Eq. (12). 

In such asymmetrical chevron configurations, Takeuchi et al.[12] gives the ultimate strength in the same 
formulation as for the symmetrical stiffness case: 

0
1

0

( )
( ) ( ) 1

r r r
p r cr

lim cur r B
p r cr

M M a N
N N

M M a N
− +

= >
− +

 (5)
 

  
Ncr

r can be obtained using the equivalent slenderness ratio, given as follows: 
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Furthermore, the stability limit with plastic hinges at the gusset plates, Nlim2, can be expressed as follows: 
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(Asymmetrical mode) (15) 
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It can easily be confirmed that Eq. (13) and Eq. (15) reduce to Eq. (8) and Eq. (9), respectively, when applying 
symmetry conditions ξ1= ξ 2= ξ and ξκRg1=  ξκRg2=  ξκRg.  When the moment transfer capacity Mp

r=0 and ξκRg is 
infinite, Eq. (6) gives the same criteria as Eq. (1) by Koetaka et al. When ξκRg is relatively small, Eq. (14) and 
Eq. (12) gives the same criteria as Eq. (2). Eq. (14) can alternatively be expressed as: 
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This is the same criteria proposed by Eq. (3) by Koetaka et al. and Okazaki et al. (Eq. (4)). When, γJEIB is very 
small and Mp

r is strong enough, Eq. (5) approaches Nlim=Ncr
B which is global elastic buckling including 

connections. As above, Takeuchi’s equation set [11], [12] covers all the past proposals. 

7. Estimation of connection end rigidity (ξκRg) 
Although the generalized stability evaluation equation set is established, an analytical method of estimating of 
each stiffness component is not clear. In the following discussion, simplified methods for some relevant 
connection details are introduced.  

Normalized rotational spring ξκRg values for beam-column connections were evaluated using FEM analysis 
[14] and the results shown in Fig. 12. This figure indicates that a simplified method proposed by Kinoshita [15] 
is close to FEM results with rigid beam/column conditions. However, when beam/column deformation is 
considered, Kinoshita’s method is not conservative. In general, gusset plates with low stiffness (Fig. 4(a)) give 
ξκRg values of around 0.2, and those with high stiffness (Fig. 4(b)) gives ξκRg values of around 1.0. 

The influence of the rotational spring stiffness on the equivalent slenderness (Eq. (8)), and hence equivalent 
effective length is marked.  For the case of a pin at the restrainer end, the low and high stiffness gussets produce 
equivalent effective lengths of 9 and 5, respectively, while the Tsai and Nakamura et al. [8] method proposes an 
effective length of 2, albeit with a longer L0, dependent on beam and column sizes. 
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 Fig.12 ξκRg values for beam-column connections  
 
The normalized rotational spring stiffness, ξκRg2, for the chevron configuration upper (beam) connection was 
also analysed using FEM [16], as shown in Fig. 13. The figure indicates that the rotational stiffness falls between 
ξκRg2=006~0.2 if perpendicular secondary beams have nominal pin connections. With fixed secondary beams of 
0.5~0.7 times the depth of the primary beam and a high stiffness gusset, rotational stiffness increases to ξκRg2 
=0.4~0.6. 

 
Fig.13 ξκRg2 values for beam-side connections in chevron configurations 

8. Position of the upper ends for stability evaluation 
In Takeuchi et al. [12], the position of the rotational spring at the upper (beam) connection of chevron frames is 
also discussed, concluding that Model-3 in Fig. 14 can be used for KRb/KRg2’>10, and Model-2 can be used for 
KRb/KRg2’>ξ2/ξg-1≈0.5~0.8.  Fig. 15 shows KRb/KRg2’ corresponding to the Fig. 13 FEM analysis results. 
Generally, the gusset point of rotation can be taken from the bottom flange of the main beam (Model-2) for Type 
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1 and 2 gussets (Fig. 13). For Type 3 gussets, which feature full depth edge stiffeners, the beam centroid should 
be assumed as the point of rotation, but in this case the rotational stiffness ξκRg2 itself is quite large. 

 
Fig.14 Position of the upper end in chevron configurations 

 
Fig.15 KRb/KRg2’ values for beam-side connections in chevron configurations 

9. Estimation of global elastic buckling strength of a BRB (Ncr
B) 

The global elastic buckling strength of a BRB, Ncr
B, including the effects of the connection zone’s bending 

stiffness and the gusset plate’s rotational stiffness, can be estimated from numerical analysis, by using the model 
shown in Fig. 16, or by using the following equations. For chevron configuration, ΚRg = min[ΚRg1, ΚRg2], and 
ξ = max[ξ 1, ξ 2] can be used.  

2B
crN EIα=  (17) 

where, α is the value satisfying the following equations. 
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 Fig. 16 Buckling mode including springs 

When KRr is infinity and γJ = 1, the solution approaches the simpler approximate formula in ref. [11]. 
22
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where, 0Rg
L Rg

B

K L
EI

κ = . Note that NB
cr becomes π2EIB/L0

2 when LκRg=0, and NB
cr =4π2EIB/L0

2 when LκRg=∞. 

10. Estimation of the bending moment produced by out-of-plane drift (M0
r) 

  The initial bending moment M0
r at the restrainer ends produced by out-of-plane drift can be estimated from 

numerical analysis using the model as shown in Fig. 17 or by using the following equation. For the chevron 
configuration, ξκRg = max[ξκRg1, ξκRg2], and ξ'= min[ξ'1, ξ'  2] can be taken.  
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 Fig. 17 Bending moment produced by out-of-plane drift 

where,   0Rg
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KRg is the rotational spring at the gusset plates and KRr is the rotational spring at the restrainer ends. When 
KRr→∞, EIB/L0→∞, γ = 1 and ξ’= ξ, this equation approaches the simpler formulas from the previous study (Eq. 
(31) in Reference [11]): 
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L L
δ ξ≤ − , from Equations (20) and (22). 
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Reflecting on the proposed equations, the following process can be applied in practice to ensure BRB stability: 

For the one-way configuration shown in Fig. 5(a), (Bolted and welded connections): 
1. Estimate the normalized gusset rotational spring, ξκRg, according to Section 7, and then estimate Ncr

r by 
applying the equivalent slenderness ratio from Eq. (8) into column design curves. 

2. Estimate the initial imperfection at the restrainer ends, ar (Fig. 10), the global elastic buckling strength, Ncr
B 

(Section 9), and the initial bending moment at the restrainer ends due to out-of-plane drift, M0
r (Section 10). 

3. Estimate the restrainer end moment-transfer capacity, Mp
r, if any, and the plastic gusset bending strength, 

Mp
g, including axial actions. To estimate Mp

r, specific equations for each restrainer configuration need to be 
established. Refer to [11] for equations applicable to mortar-filled steel-tube BRBs with cruciform inserts. 

4. Calculate Nlim1 by Eq. (5) and Nlim2 by Eq. (9).  The stability limit, Nlim, is the smaller of Nlim1 and Nlim2. 
5. If Nlim is larger than the expected compressive force of the core, Ncu, BRB stability is secured. If not, 

increase KRb, K’Rg, or Mp
r and repeat steps 1 to 5. 

For the chevron configuration shown in Fig. 5(b), (Bolted and welded connections): 
1. Estimate the normalized rotational spring stiffness at the upper (beam) side, ξκRg2 (Section 7), then estimate 

Ncr
r by applying the equivalent slenderness ratio from Eq. (13) or Eq. (14) into column design curves. 

2. Estimate upper ar from Fig.10, Ncr
B (Section 9), and M0

r (Section 10). 
3. If moment transfer capacity is expected, estimate Mp

r and Mp
g, including the axial actions. 

4. Calculate Nlim1 by Eq. (5) and Nlim2 by Eq. (15) and Eq. (16). The stability limit, Nlim, is the smaller of Nlim1 
and Nlim2. 

5. If Nlim is larger than expected compressive force of the core, Ncu, BRB stability is secured. If not, increase 
KRb, K’Rg, or Mp

r and repeat steps 1 to 5. 

For the pinned connection shown in Fig. 3(c), buckling behaviour depends on which direction the pin is 
orientated.  If the pin joint transfers out-of-plane bending moment, use the process for the bolted connections.  
Otherwise, assuming that pin fully releases out-of-plane moment, use the following process: 
1. Estimate normalized rotational spring ξκRg (one-way) or ξκRg1, ξκRg2 (chevron) according to Section 7, and 

then estimate Ncr
r by applying the equivalent slenderness ratio from Eq. (8) (one-way), Eq. (13) or Eq. (14) 

(chevron) into design column curves. ξL0 can be estimated as the distance between the beam/column flange 
and pin point of rotation. 

2. Estimate Mp
g, including axial actions and take Mp

r= M0
r =0. 

3. Calculate Nlim1 by Eq. (5) and Nlim2 by Eq. (9) (one-way) or Eq. (15) (chevron). The stability limit, Nlim, is 
the smaller of Nlim1 and Nlim2. 

4. If Nlim is larger than expected compressive force of the core, Ncu, BRB stability is secured. If not, increase 
KRb, K’Rg and repeat steps 1 to 5. 

These equations can also be readily formulated into design charts, refer to [17] for an example. 

In the above procedures, other sources of premature failure such as core bulging through the restrainer wall and 
fracture of the adjacent framing are assumed to be suppressed.  Recent research into these mechanisms and 
recommended design procedures are reviewed in a companion paper [18]. 

12.  Conclusions 
Previously proposed BRB stability criteria are reviewed and compared, and a unified concept explaining all of 
those proposals are introduced, followed by a simplified approach for practical design. In summary: 

1) The proposals by Koetaka, Inoue et al. and Hikono, Okazaki et al. are confirmed to be equivalent criteria as 
Takeuchi’s proposal when the moment transfer capacity at the restrainer ends is neglected. 

2) The criteria indicated by Tsai, Nakamura et al. can underestimate the connection buckling strength when 
comparing the condition of no moment transfer capacity at the restrainer ends. 

3) A unified stability criteria covering all the conditions is proposed, based on Takeuchi’s proposals for both 
the one-way and chevron configurations. 
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