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Abstract 
Dynamic response analysis of non-linear structures involving random parameters under earthquakes has been an important 
and challenging problem for a long time. As a newly developed method, probability density evolution method (PDEM) is 
capable of capturing the instantaneous probability density function (PDF) of stochastic dynamic responses of structures. 
However, as the demand for accuracy of numerical model increase, engineering problems involve more and more complex 
computer codes and the calculating of the reliability of structure may require very time-consuming computations. Therefore, 
minimizing the number of calls to the numerical models become one of the most important challenges in this area. Many 
response surface methods (RSM) such as Least Square Regression, Polynomial Chaos, Support Vector Machine are 
introduced to solve this problem. Recently, the Gaussian process regression (GPR) or so called Kriging method has received 
increasing attention in the field. Unlike most response surface methods, Kriging method is an exact interpolation method 
and capable of giving the confidence of its result. The aim of this paper is to propose a new approach named K-PDEM 
based on probability density evolution method and Kriging metamodel to assess the reliability of structure under 
earthquake. The result shows that the new method is efficient and accurate for calculating the reliability of structure 
especially when the number of calls to numerical model is small. 
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1. Introduction 
Stochastic dynamic analysis of nonlinear structures is an open research question especially when the degree of 
randomness is large. Because of the great difficulty in analytic calculation, a variety of numerical methods such 
as the Monte Carlo simulation (MCS) method[1,2], the random perturbation technique[3] and the orthogonal 
polynomials expansion method[4,5] have been introduced to satisfy the requirements of engineers and scientists. 
When the problem comes to the highly nonlinearity, Monte Carlo simulation is the most applicable method. 
However, the computational effort of MCS is sometimes unbearable for the stochastic analysis of sophisticated 
structure numerical model. For random perturbation technique, the computational effort is relatively lower 
compare to the MCS, but the application of the technique is restricted by the small variation assumption about 
the random parameters. The orthogonal polynomials expansion method in some ways achieved the balance 
between the computational effort and applicability. 

In general, the methods which can provide the high-order statistical quantities and has acceptable 
computation effort  are not available yet. Recently, On base of the principle of preservation of probability, a 
series of numerical probability density evolution methods has been developed[6]. The researches shows that the 
probability density evolution method (PDEM) can meet the requirement of fair accuracy and efficient when the 
dimension of random parameters and the number of the representative point set is acceptable [7].  
However, for complex and time-consuming structure model, the number of representative points is still relative 
large for engineering purpose[8]. To further decrease the number of the representative points on the premise of 
reasonable accuracy, the surrogate model method are introduced. The surrogate model can be roughly divide into 
two categories: parameter surrogate model and nonparametric surrogate model. The earlier application of 
surrogate model is parameter regression[9]. However, the result of the parameter surrogate model is sensitive to 
the experiment design and the application of this method is limited by its weak generalization ability[10,11]. To 
overcome the above limitations, nonparametric surrogate models have been proposed such as Polynomial 
Chaos[12], Neural Network[13] and Support Vector Machine[10]. 

Aside from these surrogate models, Kriging method has been intensively investigated because of its 
stochastic property and extensive applicability. In the 1970s, Krige and Matheron[14] first developed Kriging 
method in the field of geostatistics. Unlike most response surface methods, Kriging method is an exact 
interpolation method and capable of giving the confidence of its result. The applications of Kriging method to 
structures analysis are rather recent. Romero introduced the Kriging method in civil engineering for solving 
stochastic problem in 2004[15]. According to his result, Kriging method is more efficient than polynomial 
regression and finite-element interpolation. Following their pioneer work, Kaymaz[16] investigates the 
effectiveness of Kriging method and compare it to classic response surface method. The result shows that the 
reliability results can be improved by carefully choosing the Kriging parameters. 

In this article, a new method are proposed for stochastic dynamic analysis result by introducing Kriging 
method into the numerical calculation framework of PDEM. The idea of this method can be divided into two 
stage. The first stage of the method consists of selecting the representative points set with small size and training 
the Kriging estimators at each time step. The training of Kriging estimator is based on the MATLAB toolbox 
called DACE[17]. Another set of enriched representative points with large size is selected and the response of 
each time step can be achieved by using Kriging estimator. Then, the probability density function (PDF) of the 
responses can be calculated by the application of traditional PDEM. 

This article is framed in five sections. The theory and numerical implementation of probability density 
evolution method is briefly introduced in Section 2. Following this, the basic idea of Kriging method is 
introduced in Section 3. Section 4 propose the framework of new method (K-PDEM) and its details. In Section 
5, three numerical examples  are investigated to validate K-PDEM. The result is compared to theoretical solution 
and Monte Carlo Simulation. According to the test results, K-PDEM shows fair accuracy when the number of 
calculation to the response is relatively small compared to the traditional PDEM. 
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2. PROBABILITY DENSITY EVOLUTION METHOD 
For simplicity, a dynamical system with stochastic parameters is written as 

 ( ) ( , , )X X Θt t= Φ   (1) 

with the initial condition 

 0 0( )X xtt t = =   (2) 

where T
1 2( , , , )X NX X X=    is the state vector consisting of  N  components ( )iX t ,  T

1 2( , , , )NΦ Φ Φ= Φ  

the dynamic operator,  T
1 2( , , )sΘ ,Θ Θ= Θ  the s-dimensional random vector with the joint probability density 

function (PDF) ( )pΘ θ  ,  T
0 0,1 0,2 0,( , , )x sx x x,=   the initial value vector with the PDF 

0
( )pX x  .  

It is well known that, under certain regularity conditions, the solution of Eq. (1) and Eq. (2) exists and is 
unique. This solution is expressible in the form 

 
( ) ( , ) or
( ) ( , ), 1, 2, ,

X H Θ
Θj j

t t
X t H t j N

=
= = 

  (3) 

Then, the generalized density evolution equation can be deduced from the principle of preservation of 
probability [6] 

 
1

( , ) ( , )( , ) 0X Xx xN

j
j j

p t p tX t
t x=

∂ ∂
+ ⋅ =

∂ ∂∑ Θ Θθ, θ,
θ   (4) 

with the initial condition 

 0( , , ) ( ) ( )X x x xp t p= −δΘ Θθ θ   (5) 

Because the difficulty in obtaining the close-from expression  of  ( , )jX t θ  , analytically solving the Eq. (4) 
extremely hard. However, as a partial differential equation, its numerical solution is usually available [6]. 

3. KRIGING METHOD   
3.1 Kriging method 

The Kriging methods is a class of basic best linear interpolator with statistical  property. It is developed by Krige 
in geostatistics in the 1950s[27]. Then, Romero introduced the Kriging method into the structural reliability 
problems[15]. The basic form of the Kriging estimator can be expressed as 

 
( )

( ) ( )= [ ( ) ( )]
u

u u u u
n

*Z m Z m
=1

− −∑ α α α
α

λ   (6) 
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where u   is the vectors of estimation point,  uα  is the points near the estimation point,   is the number of points 

which in the nearby area of estimation point, ( )um  , ( )um α  expected values of ( )uZ   and ( )uZ α  , ( )uαλ   is 

the weight value of each  uα  for estimation location u  , different estimation location will receive different 
weight. 

The basic idea of Kriging method is that the  ( )uZ   is a random field with a trend component  ( )um   and a 
residual component ( ) ( ) ( )u u uR Z m= −  . The residual of predicted value of Kriging method at  u   is the sum 
of  the weighted residuals of surrounding data points at uα  . So, the most crucial part of Kriging method is to 

determine the weights αλ  which minimize the variance of the estimator 

 ( )=Var{ ( ) ( )}u u u*
E Z Z2 −σ   (7) 

under the constraint 

 E{ ( ) ( )}u u*Z Z− = 0   (8) 

As the Kriging estimator has been divided into two parts 

 ( ) ( )+ ( )u u uZ R m=   (9) 

Suppose the residual component ( )uR   is a stationary Gaussian process with zero mean 

 E{ ( )}uR = 0   (10) 

and the covariance between point u  and u h+   

 Cov{ ( ) ( )}=E{ ( ) ( )}= ( )u u h u u h hRR ,R R R C+ − +   (11) 

where ( )hRC  is the correlation function. The definition of correlation function of different Kriging model is 
decided by the different input semivariogram model 

 ( ) ( ) ( )h 0 hR RC C= −γ   (12) 

where ( )hγ   is the semivariogram model. 

There are three main kinds of Kriging methods, simple, ordinary and Kriging with trend. The difference 
between them is the assumption about the trend component ( )um  . For convenience, all the following equations 
are based on ordinary Kriging theory. For ordinary kriging, the trend component ( )um  is constant in the local 
neighborhood of each estimation point. In this case, Eq.(14) become 

 
( ) ( ) ( )

( )= ( ) [ ( ) ( )]= ( ) ( ) ( ) ( )
u u u

u u u u u u u u
n n n

*Z m Z m Z m
=1 =1 =1

 
+ − + 1− 

 
∑ ∑ ∑α α α α α
α α α

λ λ λ   (13) 

For ordinary Kriging, the sum of weights is requiring to be 1 

 
( ) ( )

( )= ( ) ( ) with ( )
u u

u u u u
n n

*Z Z
=1 =1

=1∑ ∑α α α
α α

λ λ   (14) 

According to the rule of variance, the Eq.(15) can be written as 

4 

 

 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 

 

 ( ) ( ) ( )

( )=Var{ ( )}+Var{ ( )} COV{ ( ) ( )}

= ( ) ( ) ( ) ( ) ( ) ( )
u u u

u u u u u

u u u u u u u

* *
E
n n n

R R R

R R R ,R

C C C

2

=1 =1 =1

− 2

− + 0 − 2 −∑∑ ∑α β α β α α
α β β

σ

λ λ λ
  (15) 

In order to minimize the variance in Eq.(15) with the unit-sum constraint on the weight, the objective function of 
this problem is error variance plus an additional term involving a Lagrange parameter, ( )uµ   

 
( )

( )+2 ( ) ( )
u

u u u
n

EL 2

=1

 
= 1− 

 
∑ α
α

σ µ λ   (16) 

Take the derivative respect to  µ  , the constraint obey 

 
( )

( )
u

u
nL
=1

1 ∂
=1− = 0

2 ∂ ∑ α
α

λ
µ

  (17) 

Then, take the derivative of the Eq.(24) with respect to each of the Kriging weights and set each derivative to be 
zero, we have the equations for Kriging weights 

 

( )

( )

( ) ( ) ( ) ( )

( )

( )

u

u

u u u u u u

u

u

n

R R

n

C C

,...,n
=1

=1


− + = −

 =1

 =1


∑

∑

β α β α
β

β
β

λ µ

α

λ

  (18) 

By solving Eq.(26), the Kriging weights can be obtained and the Kriging estimator in Eq.(14) is available. As 
mentioned before, the estimator of the variance of the predictions 

 
( )

( ) ( ) ( ) ( )
u

u u u u
n

E R RC C2

=1

= 0 − −∑ α α
α

σ λ   (19) 

can be also received by substituting the Kriging weights into the Eq.(27). 

4. PROPOSED METHOD: K-PDEM   
The new method which combine probability density evolution method and Kriging is named K-PDEM. Unlike 
the traditional PDEM[6] , the K-PDEM use Kriging as surrogate model to replace the time-consuming 
deterministic analysis of numerical model. For these cases which the number of calculations to numerical model 
is small, the K-PDEM can  greatly improve the results compare to the traditional PDEM. Besides, because of the 
exact interpolation characteristic of Kriging method, the new method is especially well-suited for the reliability 
analysis of structural numerical model which is a relatively noise-free model[19]. 

By combing the Kriging method and probability density evolution method, the detail of the K-PDEM is 
given in Figure.1. It consists 7 stage: 

(i) Select the representative points θkr   in the domain ΘΩ  , where 1, 2, , krkr N=   , krN  is the total number 
of selected points for Kriging estimator.  
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(ii) For a given θkr  , carry out the deterministic analysis to obtain the response ,( )X kr ktθ  ，  where 

kt k t= ⋅∆  ( 0,1, 2,...)k =   ， t∆   is the time step. 

(iii) For every kt  ( 0,1, 2,...)k =   , calculating the Kriging estimator ( )X*
kr k,tθ  according to the 

representative points θkr   and ,( )X kr ktθ  . This stage can be performed by the DACE toolbox. The 
corresponding correlation functions used in this paper is Gaussian. 

(iv) Select another enriched representative points qθ   in the domain ΘΩ  , where 1, 2, , selq N=   , selN  is the 

total number of selected points. Generally, selN  is much large than krN  . For each point, assign a probability  

qP  as its assigned probability. 

(v) Using Kriging estimator  ( )X*
kr k,tθ  to predict the response * ,( )q ktX θ  . 

(vi) Differentiate * ,( )q tX θ   with respect to t  . Introducing ),( q tX θ   to the discrete version of Eq.(4) and (5) 

and solving the equation with the finite difference method to obtain the numerical solution of ( , , )qp tX xΘ θ  . 

(vii) Numerical integral by 
1

( , ) ( , , )selN
qq

p t p t
=

=∑X XΘX x θ   

Select the representative points (1)
krθ ( 1, 2, , )krkr N= 

For each       , compute the response                ,krθ ,( )kr ktX θ kt k t= ⋅∆ ( 0,1, 2,... )tk N=(2)

For every      , compute Kriging estimator kt ( )*
kr k,tX θ (4)

Using Kriging estimator to predict the response (5) * ,( )q ktX θ

Differentiate                 with respect to     and solving Eq.(4)  to obtain (6)* ,( )q ktX θ t ( , , )qp tX xΘ θ

Select the enriched representative points (3) ( 1,2, , )selq N= qθ

Numerical integral by(7)
1

( , ) ( , , )selN
qq

p t p t
=

=∑X XΘX x θ

tk N<
Yes

No

selq N<

No

1k k⇒ +

1q q⇒ +

End of the method
 

Fig. 1 –K-PDEM  flowchart 
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5. NUMERICAL EXAMPLES   
In order to check the performance of the K-PDEM method, several examples are studied: first, a SDOF system 
with random frequency are tested to observe the method’s behavior.  Following this, a 10-story space RC frame 
with 7 random variables, designed in accordance with the Chinese design code, is simulated to test the 
effectiveness of K-PDEM. 

 

5.1 Example 1: A linear SDOF system 

The free oscillation equation of an  linear SDOF system reads 

 2 0X X+ = ω   (20) 

with the initial condition 

 (0) 0.1, (0) 0X X= =   (21) 

the natural frequency of the system ω   is a uniformly distributed random variable in [5 / 4,7 / 4]π π  . The 
analytical solution of the system and the probability density function of the response X  were presented in the 
previous work[6].  In stochastic analysis, 50 representative points and 500 enriched representative points are 
selected and the corresponding assigned probabilities are computed according to the number theoretical method 
based algorithm[18]. 

With the proposed method, the instantaneous PDF and some probabilistic information is in Figure.2. 
Figure.2(a) shows the evolution of PDFs of the first-floor displacement with respect to time in the range of  
[0.90,1.10]  . Figure.2(b) shows the PDFs of the first-floor displacement at three certain time moment. 

Besides, K-PDEM is compared with the traditional PDEM[6] and analytical solution. The results shows in 
Figure.3 and Table.1 prove that the proposed K-PDEM is of high accuracy. The K-L (Kullback–Leibler) 
information distance are introduced to quantify the difference between two probability distribution functions. 
According to the comparison in Table 1, K-PDEM is significantly better than the traditional PDEM when the 
number of calls to the displacement is relatively small. 

 
(a) PDF evolution surface                                     (b) Typical PDF at certain time instants 

Fig. 2 –The PDFs of the response of the system 
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Fig. 3 –Comparison between K-PDEM,PDEM and theoretical solution 

Table 1 –K-L distance between theoretical solution and numerical solution 

K-L distance t=0.90 t=1.00 t=1.10 

K-PDEM 0.0062824 0.0054720 0.0027323 

PDEM 0.0181406 0.0263626 0.0254710 

 

 

5.1 Example 2: 10-story space RC frame 

The second example considers a 10-story space RC frame, designed in accordance with the Chinese design code 
(Ministry of Construction of the People’s Republic of China, 2010), is simulated to assess its earthquake-
resistant capacity under earthquake excitations. The OpenSees model of this building is shown in Figure.4. Story 
heights of the frame are 4.5m for the first floor and 3.5m for the other floors. Columns are spaced at 5m in the 
long direction of the floor plan while in the short direction they are spaced at 6m, 3m and 6m, respectively.  

 
Fig. 4 –Configuration of 10-story RC frame 
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The heights of the first floor is 4.5m and 3.5m for the other floors. Columns are spaced at 5m in the long 
direction of the floor plan while in the short direction they are spaced at 6m, 3m and 6m, respectively. The 
dimensions and the reinforcement details are given in Table 2. Stirrups for both beams and columns are diameter 
8mm with a spacing of 100mm. 

Table 2 –Dimensions and the reinforcement details for 10-story RC 

Story 
No. 

Exterior Beam Interior Beam Column 
Cross 

Section 
Dimension 

Reinforcement 
Area 

Cross 
Section 

Dimension 

Reinforcement 
Area 

Cross 
Section 

Dimension 

Reinforcement 
Area 

1-4 300×600mm 2274mm2 250×500mm 2274mm2 600×600mm 3768mm2 
5-10 300×600mm 2035mm2 250×500mm 2035mm2 600×600mm 3768mm2 

 

Seven material properties parameters are considered as random variable in this model. The mean value and 
the coefficient of variation of the random variables are listed in Table.3. All random variable are normal 
distributed. 

Table 3 –The probabilistic information of the random variables 

Type Mean Coefficient of variation 

Compressive strength  fc 36MPa 0.15 

Compressive peak strain εc,p 0.002 0.15 

Compressive residual strain εc,r 0.0015 0.15 

Tensile strength  ft 3.6MPa 0.15 

Tensile residual strain εt,r 0.01 0.15 

Elastic modulus Es 2×105MPa 0.15 

Yield strength  fy 400MPa 0.15 

 

The structure is subjected to bidirectional earthquake ground motions. The north-south component of the 
ground motion in the 1940 Imperial Valley California earthquake recorded at the El Centro Station is applied 
along the long direction of the frame’s floor plan while the east-west component of the same ground motion is 
simultaneously applied along the short direction. Figure.5 shows the time history of the accelerations recorder in 
the El Centro earthquake. 
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(a) north-south component                                 (b) north-south component 

 
Fig. 5 –Acceleration time history 

 

 
(a) The contour of the PDF surface in [2 s, 5 s]    (b) The contour of the PDF surface in [5 s, 10 s] 

     
(c)  Typical PDF at certain time instants               (d) PDF evolution surface 

Figure 7:PDF of the first inter-story drift 

 

In Figure.6 shown is the probabilistic information of the first inter-story drift. Figure.6(a)-(b) are the 
contours of the probability density in the time intervals [2 s, 5 s] and [5 s, 10 s], respectively. The irregularity of  
the contour in these figures means that the probability density changes greatly against time. This can also be seen 
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clearly from the typical PDFs at different instants of times (Figure.6(c)). Figure.6(d) shows the evolution of 
PDFs of the first inter-story drift with respect to time in the range of  [9.0 s, 10.0 s]. 

 

6. CONCLUSIONS   
A new stochastic dynamic response analysis for structure named K-PDEM is developed by combining the 
Probability Density Evolution Method (PDEM) and Kriging surrogate model method. The proposed method 
improve the accuracy of the PDEM by using representative points as the training point for Kriging estimator. To 
implement the K-PDEM, the representative points are first utilized to train the Kriging estimator, and the 
Kriging estimator  is then used to prediction the response of the enriched representative points. After the above 
process, the number of the representative points with assigned probability can be greatly increased. Three 
examples have been analyzed and the results verify the efficiency and accuracy of the proposed method. In all 
the numerical examples, the K-PDEM shows significant improvement compare with the traditional PDEM. 
When the number of samples is relatively small, the advantage of K-PDEM is more obvious. 

Accordingly, some issue need to be further studied. For instance, when the dimension of the random variable is 
too high,  most of response surface method will encounter “curse of dimensionality” problem which will 
tremendously decrease the accuracy of prediction. Using dimension reduction technique to overcome this 
problem is ongoing investigation. 
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