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Abstract 
This paper focuses on the use of feed-forward control techniques in base-isolated buildings to improve the control 
performance and efficiency of active response control systems for seismic excitations. Two approaches to feed-forward 
control are studied. One is optimal feedback and feed-forward control (FBFFC), which makes use of predicted earthquake 
ground motion before its arrival. The other is input cancellation control (ICC), which is directly derived to cancel the 
absolute displacement of a base-isolated building at every moment and does not require prediction of the input ground 
motion. FBFFC is derived as an optimal control problem formulated using absolute coordinates and a control algorithm is 
derived to reduce the absolute acceleration response. 

It is found that the duration of the predicted seismic input motion required for FBFFC becomes shorter as control intensity 
increases, while control performance and the required control force approach those of ICC. Based on these findings, a new 
control algorithm that combines FBFFC and ICC is proposed. It is expected that this study will contribute to the 
development of a new approach to feed-forward active control of base isolated buildings. 
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1. Introduction 
Since the active mass driver system was first used in an actual Tokyo building in 1989 [1], there has been a 
steady increase in the number of buildings enhanced with active or semi-active response control systems in 
Japan. Active response control systems, and active mass damper systems in particular, have become firmly 
established as a technology that improves the habitability of super high-rise buildings during strong winds. 
Active response control systems are very effective. However, they use a feedback control law and are not 
suitable for fully controlling the seismic response of buildings due to limitations of control force and power. In 
other words, they are limited in application to earthquakes in the small to medium range. 

This paper focuses on the use of feed-forward control techniques in base-isolated buildings to improve the 
control performance and efficiency of active response control systems during seismic excitations. Two 
approaches to feed-forward control are studied. One is optimal feedback and feed-forward control (FBFFC), 
which makes use of predicted ground motion before the arrival of an earthquake. The other is input cancellation 
control (ICC), which is directly derived to cancel the absolute displacement of a base-isolated building at every 
moment. With ICC, there is no need to predict the input ground motion.  

FBFFC is derived as an optimal control problem formulated using an absolute coordinate system, and a 
control algorithm that reduces the absolute acceleration response is derived. An empirical transfer function for 
seismic waves between two points along the propagation path is used; one being the point of prediction (the 
location of the control system) and the other closer to the hypocenter of the earthquake being predicted. This 
transfer function, which is referred to as the prediction filter [2], is identified in the form of a state-space 
equation using past earthquake observations and is then used for the real-time prediction of future ground 
motions. A control algorithm that uses such predicted ground motions, of limited duration amounting to several 
times the natural period of the base-isolated building, has been already presented [3]. In this work, the relation 
between the required duration of the predicted input motion and the intensity of the active FBFFC is further 
studied and compared with the ICC in analysis in both the frequency domain as well as the time domain. 

It is found that the duration of the predicted seismic input motion required by FBFFC becomes shorter as 
control intensity increases, and the control performance and required control force approach the ICC results. 
Based on these findings, a new control algorithm that combines FBFFC with ICC is presented. It is expected that 
this study will contribute to developing a new approach to feed-forward active control of base isolated buildings. 

2. Linear regulator problems with external excitations [4] 
2.1 Optimal feedback and feed-forward control  
In an absolute coordinate system, the state equations and the evaluation function for the objects to be controlled 
are given by the equations provided below. 

 )()()((t) 0 ttt EyBuAxx ++=  (1) 

where A  and B  are n× n and n×m constant matrices, )(tx  is the state vector, )(tu  is the control input vector, 
and )(0 ty  is obtained by combining the displacement and velocity of the input seismic motion. 

The performance measure to be minimized is 

 { }dtttttft T∫ +=
0

T )()()()(
2
1 RuuQxxJ  (2) 

where Q  is a real symmetric positive semi-definite matrix and R  is real symmetric and positive definite. The 
final time ft  is fixed, )( ftx  is free, and the states and controls are not bounded. 

The Hamiltonian is given by 

 [ ] [ ])()()()()()()()(
2
1)),(),(),(( 0

TT ttttttttttttH T EyBuAxpRuuQxxpux ++++= . (3) 
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The costate equations are 

 )()()( T ttHt pAQx
x

p −−=
∂
∂

−=   (4) 

and the algebraic relations that must be satisfied are given by 

 )()( T ttH pBRu
u

0 +=
∂
∂

= ; (5) 

Therefore, 

 )()( T1 tt pBRu −−=   (6) 

Let us assume that the costate is expressed by the equation 

 )()()()( tttt sxKp +=  (7) 

Differentiating both sides with respect to t , we obtain 

 )()()()()()( tttttt sxKxKp  ++= . 

Substituting from Eq. (4) for )(tp , and Eq. (1) for )(tx , and using Eq. (7) to eliminate )(tp , we obtain 

 [ ] [ ] 0EyKsBBRKAssxKBBRKKAAKQK =+−++−+++ − )()()()()()()()()()()()()( 0
T1-1T ttttttttttttt T  (8) 

Because this must be satisfied for all )(tx  and )(ts , we obtain 

 )()()()()( 1 ttttt T BKBRKQKAAKK −+−−−=  (9) 

and 

 [ ] )()()()()( 0
1 ttttt T EyKsBBRKAs −−−= −  (10) 

To obtain the boundary conditions we have, from Eq. (7), 

 0sxKp =+= )()()()( ffff tttt . (11) 

Since this equation must be satisfied for all )( ftx , the boundary conditions are 

 0K =)( ft , and 0s =)( ft  (12) 

In the following study, a constant matrix K , which is obtained for an infinite-time process as ∞→ft , is 
used to determine the feedback control force. The K  matrix is obtained by solving the algebraic matrix Riccati 
equation 

 KBKBRQKAKA0 TT 1−+−−−= , (13) 

obtained by setting 0K =)(t  in Eq. (9). 

The optimal feedback and feed-forward control force is the sum of the optimal feedback control force 
)(tfbu  ( )(1 txT KBR−−= ) and the optimal feed-forward control force )(tffu ( )(1 tT sBR−−= ); 

 )()()()()( 11 ttttt TT
fffb sBRKxBRuuu −− −−=+= . (14) 

Substituting Eq. (14) into Eq. (1), we obtain 

 )()()()( 0 tttt c yEFsxAx ++= ,  (15) 

where BRF 1−−=  and KBRAA T
c

1−−= . 

The state space equation for )(ts , which determines the feed-forward control force, is expressed by 
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 )()()( 0 ttt c KEysAs T −−= . (16) 

To predict the input base excitations, )(0 ty , we introduce the following identified state space equations, 
named the prediction filter [2].  

 )()()( tttd wDzAz ddd  += , )()(0 tt dd zCy = , (17) 

where )(tw  is the input acceleration to the prediction filter. 

Once )(0 ty  is predicted with the help of Eq. (17), the optimal feed-forward control force may be 
calculated by integrating Eq. (16) backward in time starting from ftt = . It was generally believed that the whole 
time history of the input base accelerations should be known beforehand to determine the feed-forward control 
force. Various control algorithms using predicted base accelerations of limited duration have been developed  [3] 
and will be reviewed in the following section. 

To study the frequency response characteristics of FBFFC with respect to the input accelerations to the 
prediction filter, the extended state space equation is defined from Eqs. (15), (16) and (17) as follows: 
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3. Active response control algorithms considering external excitations 
To evaluate the optimal feed-forward control force in the time domain, it is necessary in general to know the 
whole time history of ground base acceleration in advance [5]. A control algorithm that uses the free vibration 
component, which can be predicted in advance, has previously been presented as a way to evaluate the feed-
forward control force [6]. A control algorithm that uses input accelerations of limited duration has been devised 
based on the dynamic programming approach [7]. However, there appears to be no fully developed practical 
control algorithm for determining the feed-forward control force in the time domain. In the sections that follow, 
an optimal feed-forward control that uses the whole time history is first described. Then a practical control 
algorithm that approximates the optimal feed-forward control force based on a limited part of the full base 
acceleration history is explained [3]. 

3.1 Optimal feed-forward control with global optimization 

The impulse response function of the feed-forward control force may be calculated backward in time starting 
from ftt =  using Eq. (16). Let us assume that the transition matrix of the state space equation (16) is )(tΦ . The 
impulse response function )(th , which is an anti-causal function, is then obtained by 

 {} 



≤−=
>=

01)()(
0)(

tfortt
tfort

KEΦh
0h

, (19) 

where )(tΦ  is calculated from the inverse Laplace transform of the transfer function 1)( −+ T
cs AI . 

The feed-forward control force at time t  may be given by 

 )()( 1 ttt f
T

ff −−= − sBRu , (20) 

where )(ts  is calculated backward in time using the following equation, 

 τττ dtttttt
t

t ffff
f

)()()()()( 0∫ −−⋅−=− yhsΦs . 0≥≥ tt f  (21) 

The second term on the right-hand side of (21) is a convolution integral. Assuming the boundary condition 
0s =)( ft , Eq. (21) can be simplified as 
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 τττ dttt
t

t ff
f

)()()( 0∫ −−=− yhs   (22) 

As is clear from Eq. (22), the full time history of the ground base acceleration from ft  to t  must be 
known in advance to determine the feed-forward control force at t . 

Let us divide the time history of ground base acceleration into N  blocks with each interval endpoint 
denoted by ),...,1(, Niti = . 

The feed-forward control force for the i -th block may be calculated by 

 )()( 1 ttt i
T

ffi −−= − sBRu  (23) 

where )( tti −s  is evaluated, following (21) and (22), as 

 τττ dttttttt
t

t iifii
i

)()()()()( 0∫ −−−⋅−=− yhsΦs  1−≥≥ ii ttt  (24) 

and 

 τττ dttt i

f

t

t fif )()()( 0∫ −−=− yhs   (25) 

The feed-forward control force for the i -th block is determined by (23), which we call feed-forward control by 
global optimization (GFFC). 

3.2 Optimal feed-forward control with modified individual optimization 

Next, let us consider the following individual performance measure: 

 { }dttttti

i

t

t

T
i ∫

−

+=
1

)()()()(
2
1 T RuuQxxJ , (26) 

where the ground base acceleration is assumed to be zero after it  (or the boundary condition 0s =)( it  is 
assumed). The optimal feed-forward control force for the i -th block may be calculated using (22): 

 )(ˆ)(ˆ 1 ttt i
T

ffi −−= − sBRu , (27) 

where 

 τττ dttt
t

t ii
i

)()()(ˆ 0∫ −−=− yhs   1−≥≥ ii ttt . (28) 

The feed-forward control force for the i -th block is determined by (27), which we call feed-forward 
control by individual optimization (IFFC). The GFFC is expected to perform better than the IFFC, due to the 
effect of the first term on the right-hand side of Eq. (24), i.e. the homogeneous solution, which, however may be 
negligible as long as itt −  is sufficiently large that the transition matrix )( itt −Φ  approaches 0 . 

If the homogeneous solution becomes small enough with di Ttt ≥−  and the ground base acceleration can be 
predicted for more than ad TT +  seconds in advance, the IFFC value of )(ˆ tffiu  may approximate to the GFFC 

)(tffiu  for t  ranging between 1−it  and ai Tt +−1 . Using this principle, a control algorithm that improves the 
performance of IFFC is devised, as shown in Fig. 1, where the IFFC value of )(ˆ tffiu  for the coming ad TT +  
seconds is calculated at 1−= itt  and is used for aT  seconds; the IFFC value of )(ˆ 1 tffi+u  for the coming ad TT +  
seconds is then calculated at )( 1 aii Tttt +== −  and again used for aT seconds. This procedure is iterated to 
determine the feed-forward control forces, in a process that we call feed-forward control by modified individual 
optimization (MIFFC). 
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Fig. 1 Schematic for determining the feed-forward control force for MIFFC 

3.3 Seismic input cancellation control 
In control that absorbs the movement of the seismic motions in a base isolation layer with low stiffness, the third 
term of Eq. (1) may be canceled out by the second term of the control force [8]. This control is referred to as 
Input Cancellation Control (ICC). The control force u  is obtained from the following equation in case of uni-
directional control: 

 00 y・cy・ku +=  (29) 

where k  is the stiffness of the base isolation layer, c  is the damping coefficient and 0y  and 0y are the 
displacement and velocity of the input seismic motion, respectively.  

4. Feed-forward control of base-isolated building 
Let us consider a single-degree-of-freedom building model, as shown in Fig.2. The mass, the stiffness, and the 
natural circular frequency of the building model are denoted by sm , sk , sω , respectively. The damping 
coefficient and the corresponding damping factor are denoted by sc  and sζ . The absolute displacement of the 
structure is denoted by sx . The scalar control force and the ground base excitation are given by )(tu  and )(0 ty , 
respectively. 

The state space equations are given by Eq. (1), where ( ))(),()( txtxt ss =x , 
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The performance measure is given by Eq. (2), where 

 







=

v

d

q
q

Q , [ ]r=R  (31) 

The solutions of the matrix Reccati equations are given by 



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


=

2212

1211

kk
kk

K , 

where  )/(2 2
221222

2
1211 rmkkkkk ssss ++= ωωζ , 1

242422
12 rqmrmrmk sssss ++−= ωω  and 

 rmqkrmrmk sssssss
2

212
22242

22 )2(42 +++−= ωζωζ  

Next, the prediction filter in this study is simplified as a band pass filter, of which the transfer function is 
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The corresponding state space equation is given by Eq. (17), where 
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 22
hda ωω= , )(2 dhhdhdb ωζωζωω += , 22 4 hhdhddc ωωωζζω ++= , )(2 ddhhd ωζωζ += . 

 The parameters for the building model are as follows: the natural period of the building is 0.25s and the 
corresponding natural circular frequency 25.0/2πω =s rad/s, sζ =0.10, and sm = 6100.1 × kg. The parameters for 
the prediction filter are; 10/sh ωω = , 70.0=hζ , sd ωω ×=10 , and 707.0=dζ . Fig. 3 shows the frequency response 
function of the prediction filter. 
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0y
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Fig. 2 A single-degree-of-freedom building model  Fig. 3 Frequency response function of prediction filter 

 

4.1 Optimal feedback and feedforward control 
4.1.1 Control performance in frequency domain 

The frequency responses of the optimal feedback and feed-forward control (FBFFC), as well as those of the 
optimal feedback control (FBC), with respect to the input acceleration )( ωiw  are calculated from the Fourier 
transform of Eq. (18). Figure 4(a) shows the frequency responses of the building acceleration per unit input 
acceleration with the FBC. The dimensionless weighting parameters for the control are defined as r , 

)/( 42 rmqq ssdd ω= , and )/( 22 rmqq ssvv ω= . The frequency responses are calculated for increasing == vd qq 0.2, 0.5, 
2.0, and 6.0 with =r  1.0 fixed. The equivalent modal damping factors increase as 31%, 44%, 71%, and 93% in 
accordance with the respective weighting coefficients. The corresponding frequency responses of the control 
force normalized by the building mass are shown in Fig. 4(b). The frequency response of the ICC control force 
given by Eq. (29) is also illustrated by the solid red line. The ICC control force seems to envelop the frequency 
response of the FBC control force. In the low-frequency region below the natural frequency, the control force 
increases rapidly. The FBFFC results are shown in Fig. 5. The control force is lower above the natural frequency, 
while the acceleration response is remarkably reduced at and below the natural frequency. In particular there is a 
significant reduction in acceleration response in the vicinity of the natural frequency, confirming the 
effectiveness of feed-forward control in reducing resonance response. Note that in this case also the ICC control 
force is shown as the envelope frequency response of the FBFFC control force. 

 

sωω /
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Fig. 4 Comparison of frequency response (FBC) 
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Fig. 5 Comparison of frequency response (FBFFC) 

 

4.1.2 Control performance in time domain 

The time domain performance of FBFFC and ICC are compared in this section. The NS component of the El 
Centro 1940 waveform is used as the seismic input acceleration for the prediction filter, Eq. (18). The maximum 
filtered acceleration is normalized to 1.0m/s2. The time history of the FBFFC force and acceleration response for 
the weighting coefficients ( vd qq =  = 2.0 and 6.0) are plotted and compared with ICC in Fig. 6. The time delay of 
the control force due to the sampling time interval of 0.005s is considered in ICC. ICC performs better than any 
other FBFFC at the cost of larger control force. The ICC control force seems to be obtained as the limit case of 
FBFFC control force. 

 

  
(a) Acceleration response 

sωω / sωω /

sωω /sωω /

 = 2.0vd qq =FBFFC ( )

 = 6.0vd qq =FBFFC ( )

ICC  
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(b) Control force 

Fig. 6 Comparison of time history response 

 

4.2 Development of feedback and input cancellation control 
The results obtained in Section 4.1 indicate that ICC may be obtained as the limit case of FBFFC. To implement 
feed-forward control, some duration of predicted seismic input excitation is generally required for MIFFC, as 
explained in Section 3.2. However, as the control intensity increases, the required duration of the prediction may 
be reduced as investigated in the following. 

To calculate the feed-forward control force for the analyses model, the transition matrix of the state space 
of Eq. (16) is expressed as 
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where 21 cc h−=ωα , 
rm

k

s
sc 2

1222 +=ωω  and 
rm

khh
s

sscc 2
2222 += ωω . 

 The value of cch ω  in Eq. (34) increases to infinity as the control intensity increases. The feed-forward 
control force for the i-th time block is expressed by Eq. (24) and the homogeneous solution may become 
negligible immediately because the transition matrix )( itt −Φ  approaches 0  for itt < . The impulse response 
function )(th  expressed by Eq. (19) would increase at itt = . However, it would also converge to zero 
immediately for itt < . Thus ICC may be obtained as the limit case of FBFFC. 

The performance of ICC is extreme because the input seismic excitation is cancelled. However, the 
required control force may become very large. On the other hand, ICC has the great advantage that it does not 
require prediction of the seismic motion. 

ICC could be used to cancel a part of the seismic input and combined with FBC. This method of control is 
referred to as feedback and input cancellation control (FBICC). Figure 7 shows the results of FBICC in which 
the input was reduced by 50% using ICC and then combined with FBC ( vd qq =  = 2.0). The results obtained with 
FBC and FBFFC for the weighting coefficient ( vd qq =  = 2.0) are also plotted in Fig. 7. FBICC improves control 
performance of FBC over the whole frequency range. Particularly in the range above the natural frequency, such 
an improvement is not attainable by FBC only, as indicated in Fig. 4. The required control force with FBICC, 
however, is more than that of both FBC and FBFFC, but is less than that of ICC. 

As noted above, FBFFC is remarkably effective at reducing the resonance response. If predictions of 
seismic motion are available, FBFFC should be used so as to reduce the resonance response effectively. In other 
cases, FBICC may be used to improve on the control performance of FBC. ICC may be used to achieve the best 
performance if the control force required to cancel 100% of the seismic input is available. 

 

 = 2.0vd qq =FBFFC ( )

 = 6.0vd qq =FBFFC ( )

ICC  
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Fig. 7 Comparison of frequency response (FBC, FBFFC and FBICC) 

 

The time domain performance of FBICC is compared with FBC and FBFFC for the weighting coefficients 
( vd qq =  = 2.0) in Fig. 8. The NS component of the El Centro 1940 waveform is used as the seismic input 
acceleration for the prediction filter, Eq. (18). The maximum filtered acceleration is normalized to 1.0m/s2. The 
input excitation for FBICC was reduced by 50% by ICC and then combined with FBC ( vd qq =  = 2.0). FBICC 
performs better than FBC and achieves almost the same performance as FBFFC. 

  
(a) Acceleration response 

  
(b) Control force 

Fig. 8 Comparison of time history response 

5. Conclusions  
As control intensity increases, the duration of the predicted seismic motion that is required as an input by 
feedback and feed-forward control (FBFFC) becomes shorter, while the control performance and required 
control force approach those of input cancellation control (ICC). Based on this finding, a feedback and input 
cancellation control (FBICC) algorithm that combines feedback control (FBC) and ICC is proposed. The control 
force required for FBICC may be larger than for FBC and for FBFFC, but is smaller than required for ICC. The 
great advantage with FBICC is that the prediction of seismic input excitation is not needed. If predictions of 
seismic motion are available, FBFFC should be used to reduce resonance response effectively. Otherwise, 
FBICC may be used to improve the control performance of FBC. ICC achieves the best performance if sufficient 

 = 2.0vd qq =FBC ( )

 = 2.0vd qq =FBFFC ( )

FBICC  

 = 2.0vd qq =FBC ( )

 = 2.0vd qq =FBFFC ( )

FBICC  

sωω /sωω /
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control force required to completely cancel the seismic input is available. It is expected that this study will 
contribute to the development of a new approach to feed-forward active control of base isolated buildings. 
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