EFFECTS OF INPUT DIRECTION OF GROUND MOTION AND COLUMN OVERDESIGN FACTOR ON SEISMIC RESPONSE OF 3D STEEL MOMENT FRAMES

I. Chan(1), Y. Koetaka(2) and K. Suita(3)

(1) Graduate Student, Dept. of Architecture and Architectural Engineering, Kyoto Univ. M. Eng., chan.hong.45r@st-kyoto-u.ac.jp
(2) Assoc. Prof., Dept. of Architecture and Architectural Engineering, Kyoto Univ. Dr. Eng., koetaka@archi.kyoto-u.ac.jp
(3) Prof., Dept. of Architecture and Architectural Engineering, Kyoto Univ. Dr. Eng., suita@archi.kyoto-u.ac.jp

Abstract

Steel moment frames should be designed to ensure sufficient energy absorption capacity by achieving an entire beam-hinging collapse mechanism under severe earthquakes. Therefore, the column overdesign factor is stipulated in seismic design codes of several countries. Since both orthogonal plane frames are designed as moment resisting frames in Japan, square tube columns are often used for steel building structures. Therefore bi-axial bending moment acts on the columns under bi-direction ground motion. On that occasion, the apparent full plastic moment of the square tube column, which is projected on the direction parallel to the frame plane, under bi-axial bending moment is smaller than the full plastic moment under a uni-axial bending moment. Considering the effect of bi-direction ground motions on the steel moment frames, the specified column overdesign factor is 1.5 or more in Japanese seismic design code.

A lot of numerical studies on the required column overdesign factor have been conducted in order to ensure beam-hinging responses under uni-direction ground motion. On the other hand, there are few researches about the required column overdesign factor of steel moment resisting frames under bi-direction ground motions.

This paper describes seismic response by 3D analysis of steel moment frames, and presents seismic demand for the column overdesign factor to keep the damage of square tube columns below the specified limit of plastic deformation. The major parameters are column overdesign factor of beam-column connections, number of stories, the planar shape of frames, input direction of earthquake.

In order to investigate 3D behavior of frames and correlation between plastic deformation of columns and column over design factor, apparent column overdesign factor, which is defined as the ratio of full plastic moment of the column(s) to the full plastic moment of the beam(s) projected in the input direction of the ground motion, is introduced. As a result of earthquake response analysis, cumulative plastic deformation of columns decreases and cumulative plastic deformation of beams increases, when apparent column overdesign factor becomes larger. The profile of maximum value of cumulative plastic deformation of columns to apparent column overdesign factor are nearly identical regardless of number of stories, floor plan, and input direction of ground motion.

As an index to evaluate the damage of columns, the plastic deformation capacity of square tube columns depending on local buckling is adopted for different rank of width-thickness ratio, and the damage level of columns is defined as the value obtained by dividing cumulative plastic deformation by plastic deformation capacity. From the relationship between apparent column overdesign factor and the damage level of columns, the required column overdesign factor to keep the damage level below the specified value is proposed.

For example, the required apparent column overdesign factor for frames with D_s value of 1/3, under level 2 ground motion, to keep the cumulative plastic deformation below the performance limit is obtained as 1.40 for square tube columns of FA rank width-thickness ratio, and 1.60 for FB rank, 1.83 for FC rank, respectively.

Keywords: 3D Steel Moment Frame; Multi-spring Model; Column Overdesign Factor; Input Direction of Ground Motion
1. Introduction

Steel moment frames should be designed to ensure sufficient energy absorption capacity by achieving an entire beam-hinging collapse mechanism under severe earthquakes. Therefore, the column overdesign factor (COF) is stipulated in seismic design codes of several countries.

For example, wide flange columns are often used for steel building structures in United States [1]. Only one of the orthogonal plane frames is designed as moment resisting frames, because the beam-to-column connections around the weak axis of the columns are designed as pin-joint. Hence, considering the moment resisting frames under uni-direction ground motion, the specified COF is 1.0 or more in AISC seismic design code [2]. On the other hand, square tube columns are often used in Japan, and both orthogonal plane frames are designed as moment resisting frames. Therefore bi-axial bending moment acts on the columns under bi-direction ground motion. On this occasion, the apparent full plastic moment of the square tube column, which is projected on the direction parallel to the frame plane, under bi-axial bending moment is smaller than the full plastic moment under a uni-axial bending moment. Considering the effect of bi-direction ground motions on the steel moment frames, the specified COF is 1.5 or more in Japanese seismic design code [3].

A lot of numerical studies on the required COF have been conducted in order to ensure beam-hinging responses under uni-direction ground motions [4-16]. On the other hand, there are few researches about the required COF of steel moment frame under bi-direction ground motions [17-21]. In comparison to the required COF under uni-direction ground motions, it has been shown that a much larger COF is needed under bi-direction ground motions. Focus on the 3D analysis model used in Ref. [17-19], 3D frames were simplified to fishbone-shaped model, which can not show the damage distribution of each structural member. Since COF was not taken to be a parameter in Ref. [20-21], in which 3D frame model was used, the required COF was not proposed.

Therefore, this paper describes seismic response of steel moment frames, e.g. damage of each member, by 3D dynamic analysis, and presents seismic demand for the COF to keep the damage of square tube columns below the specified limit of plastic deformation. The major parameters are COF of beam-column connections, number of stories, floor plan, input direction of earthquake.

2. Method of Analysis

2.1 Fundamental assumptions

1) 3D model is used in this paper. Each structural member is taken to be a simplified model with bar element.

2) Connections between beams and columns are considered rigid. Panels are ignored.

3) Nodal points have 6 degrees of freedom, 3 translational and 3 rotational axes.

4) Weight and mass are concentrated on nodal points.

5) Member models consist of an elastic component and 2 multi-spring components (MS component in the following) as shown in Fig.1.

6) The length of elastic component is the same length as the original member. Axial, bending, shear and torsion deformations are considered in the elastic component.

7) Only axial and bending deformations are considered in MS components. MS components consist of several elasto-plastic springs, in which only axial deformation is considered. MS components are assumed to have no length within the member model, but are assigned a virtual length for calculating spring stiffness.

8) Geometrical nonlinearity is not considered.

2.2 Coordinate systems

In coordinate systems, there is a global coordinate system where the 3D model is based, as well as separate member coordinate systems for each member model. The global coordinate system is fixed on the ground surface. Each member coordinate system has its origin at the i-end and moves with the member, its z-axis connects the i and j-ends, the strong-axis at the i-end is considered the x-axis, while the weak-axis is the y-axis.
2.3 Stiffness matrix of the member model

As shown in Fig.1, we consider at both ends of the member model an axial force \(n \), shear forces \(q_x \) and \(q_y \), bending moments \(m_x \) and \(m_y \) and a torsion moment \(m_z \). From assumption 4), the incremental force vector is given by Eq. (1). Here, \(\Delta \) denotes a small increment, the subscripts \(i \) and \(j \) refer to origin and end points respectively.

\[
\{ \Delta \mathbf{p} \} = \begin{bmatrix} \Delta n & \Delta m_x & \Delta m_y & \Delta m_z \end{bmatrix}^T
\]

The incremental deformation vector corresponding to Eq. (1) is given by Eq. (2).

\[
\{ \Delta \mathbf{d} \} = \begin{bmatrix} \Delta d & \Delta \theta_{x_i} & \Delta \theta_{y_i} & \Delta \theta_{z_i} & \Delta \theta_{x_j} & \Delta \theta_{y_j} & \Delta \theta_{z_j} \end{bmatrix}^T
\]

From assumption \{6\} and \{7\}, the incremental deformation vector of the elastic component \(\{ \Delta \mathbf{d}_e \} \) is given by Eq. (3), the incremental deformation vector of the MS components at the \(i \) and \(j \)-ends \(\{ \Delta \mathbf{d}_i \} \), \(\{ \Delta \mathbf{d}_j \} \) are given by Eq. (4) and Eq. (5) respectively.

\[
\{ \Delta \mathbf{d}_e \} = \begin{bmatrix} \Delta d^e & \Delta \theta_{x_i}^e & \Delta \theta_{y_i}^e & \Delta \theta_{z_i}^e & \Delta \theta_{x_j}^e & \Delta \theta_{y_j}^e & \Delta \theta_{z_j}^e \end{bmatrix}^T
\]

\[
\{ \Delta \mathbf{d}_i \} = \begin{bmatrix} \Delta d_{i_{ms}} & \Delta \theta_{x_i}^{ms} & 0 & \Delta \theta_{z_i}^{ms} & 0 & 0 \end{bmatrix}^T
\]

\[
\{ \Delta \mathbf{d}_j \} = \begin{bmatrix} \Delta d_{j_{ms}} & 0 & \Delta \theta_{x_j}^{ms} & 0 & \Delta \theta_{z_j}^{ms} & 0 \end{bmatrix}^T
\]

The constitutive equation of each member is written as Eq. (6) by using the stiffness matrix \([k]\).

\[
\{ \Delta \mathbf{d} \} = \begin{bmatrix} \Delta \mathbf{d}_e \end{bmatrix} + \begin{bmatrix} \Delta \mathbf{d}_i \end{bmatrix} + \begin{bmatrix} \Delta \mathbf{d}_j \end{bmatrix} = [k]^{-1}\{ \Delta \mathbf{p} \}
\]

\([k]^{-1}\) in Eq. (6) is found by adding the tangential flexibility matrices of the elastic and MS components, which are the inverse matrices of their respective tangential stiffness matrices. The tangential stiffness equations of the MS components are as Eq. (7) and Eq. (8). In the force-deformation relationship of the spring component the tensile side is taken to be positive. \(k_s \) denotes the stiffness of the \(s \)-th spring, \(x_s, y_s \) denote its coordinates in the member coordinate system.

\[
\begin{bmatrix} \Delta n \\ \Delta m_{xi} \\ \Delta m_{yi} \end{bmatrix} = \begin{bmatrix} \Sigma k_s & -\Sigma k_s y_s & \Sigma k_s x_s \\ \Sigma k_s y_s & \Sigma k_s & -\Sigma k_s x_s y_s \\ \Sigma k_s x_s & -\Sigma k_s x_s y_s & \Sigma k_s x_s^2 \end{bmatrix} \begin{bmatrix} \Delta d_{i_{ms}} \\ \Delta \theta_{x_i}^{ms} \\ \Delta \theta_{y_i}^{ms} \end{bmatrix}
\]
Hence, the tangential flexibility matrices of the MS components are Eq. (9) and Eq. (10).

\[
\begin{bmatrix}
\Delta m_{ij}
\end{bmatrix} = \begin{bmatrix}
\Sigma k_s & -\Sigma k_s y_s & -\Sigma k_s x_s \\
-\Sigma k_s y_s^2 & \Sigma k_s & -\Sigma k_s x_s y_s \\
-\Sigma k_s x_s & -\Sigma k_s x_s y_s & \Sigma k_s x_s^2
\end{bmatrix}
\]

(9)

\[
\begin{bmatrix}
\Delta m_{ij}
\end{bmatrix} = \begin{bmatrix}
\Sigma k_s & -\Sigma k_s y_s & -\Sigma k_s x_s \\
-\Sigma k_s y_s^2 & \Sigma k_s & -\Sigma k_s x_s y_s \\
-\Sigma k_s x_s & -\Sigma k_s x_s y_s & \Sigma k_s x_s^2
\end{bmatrix}
\]

(10)

The tangential flexibility matrix of the elastic component \([e]\) is given by Eq. (11). Here, \(A_z\) is the cross-sectional area, \(A_{sx}\) and \(A_{sy}\) the shear cross-sectional areas of the \(x\) and \(y\)-axes, \(I_z\) and \(I_x\) and \(I_y\) the second moment around the \(x\) and \(y\)-axes, \(I_z\) the torsion constant, \(E\) the Young modulus, and \(G\) the shear modulus. Shear deformation of the elastic component is considered by the terms containing \(G\) represent shear flexibility \(\epsilon_{cx}, \epsilon_{cy}, \epsilon_{cz}, \epsilon_{cy}, \epsilon_{cx}, \) and \(\epsilon_{cz}\) according to Timoshenko’s beam theory. The initial flexibility matrix of the member model, which can be got by summing the initial flexibility matrices of the elastic and MS components, differs from that of the actual member. This is because of the assumption 7) about the length of the MS components in the member model. The terms containing \(k_s',\) where \(k_s'\) is the initial stiffness of the \(s\)-th spring, are to account for the difference.

\[
[e] = \begin{bmatrix}
\epsilon_{c_z} & 0 & 0 & 0 & 0 & 0 \\
\epsilon_{c_y} & \epsilon_{c_y} & 0 & 0 & 0 & 0 \\
\epsilon_{c_x} & \epsilon_{c_x} & 0 & 0 & 0 & 0 \\
\epsilon_{c_{xy}} & \epsilon_{c_{xy}} & \epsilon_{c_{xy}} & 0 & 0 & 0 \\
\epsilon_{c_{xx}} & \epsilon_{c_{xx}} & \epsilon_{c_{xx}} & 0 & 0 & 0 \\
\epsilon_{c_{yy}} & \epsilon_{c_{yy}} & \epsilon_{c_{yy}} & 0 & 0 & 0 \\
\end{bmatrix}
\]

(11a)

\[
\epsilon_{c_z} = \frac{l}{EA_z} - \frac{2}{\Sigma k_s}, \quad \epsilon_{c_y} = \frac{l}{3EI_x} - \frac{1}{\Sigma k_s y_s^2} + \frac{1}{GA_{sy} l}, \quad \epsilon_{c_x} = \frac{l}{6EI_x} + \frac{1}{GA_{sx} l}
\]

(11b)

\[
\epsilon_{c_{xx}} = \frac{l}{3EI_x} - \frac{1}{\Sigma k_s x_s^2} + \frac{1}{GA_{sx} l}, \quad \epsilon_{c_y} = \frac{l}{6EI_y} + \frac{1}{GA_{sy} l}, \quad \epsilon_{c_z} = \frac{l}{Gl_z}
\]

(11c)

The tangential stiffness matrix of a member is given as Eq. (12).
2.4 Coordinate Transformation matrices and the global stiffness matrix

From assumption 3), the coordinate system has 6 degrees of freedom, hence in the global coordinate system, the incremental force vector \(\Delta \mathbf{P} \) and incremental displacement vector \(\Delta \mathbf{D} \) of member model, as given by Eq. (13) and Eq. (14), have 12 dimensions.

\[
\{ \Delta \mathbf{P} \} = \begin{bmatrix} \Delta P_{xi} & \Delta P_{yi} & \Delta P_{zi} & \Delta M_{xi} & \Delta M_{yi} & \Delta M_{zi} & \Delta P_{ij} & \Delta P_{qj} & \Delta M_{ij} & \Delta M_{qj} \end{bmatrix}^T
\]

\[
\{ \Delta \mathbf{D} \} = \begin{bmatrix} \Delta D_{xi} & \Delta D_{yi} & \Delta D_{zi} & \Delta \Theta_{xi} & \Delta \Theta_{yi} & \Delta \Theta_{zi} & \Delta D_{ij} & \Delta D_{qj} & \Delta \Theta_{ij} & \Delta \Theta_{qj} \end{bmatrix}^T
\]

The relations between \(\Delta \mathbf{P} \) and \(\Delta \mathbf{p} \), \(\Delta \mathbf{D} \) and \(\Delta \mathbf{d} \) at the \(n \)-th step are Eq. (15) and Eq. (16), where \([\mathbf{S}] \) is a 12x6 matrix, and \([\mathbf{T}_n] \) the \(n \)-th step coordinate transformation matrix.

\[
\{ \Delta \mathbf{p} \} = [\mathbf{T}_n][\mathbf{S}][\Delta \mathbf{p}]
\]

\[
\{ \Delta \mathbf{d} \} = [\mathbf{T}_n][\mathbf{S}][\Delta \mathbf{d}]
\]

Since the member coordinate system moves together with the member, the coordinate transformation matrix has to be updated at each step. Based on the member coordinates \((x_{n-1}, y_{n-1}, z_{n-1})\) on the \((n-1)\)-th step, by letting \((\Delta R_x, \Delta R_y, \Delta R_z) \) be the direction cosine of the increment in the rotation angle occurring between the \((n-1)\)-th and \(n\)-th steps, the transformation matrix at the \(n\)-th step \([\mathbf{T}_n]\) becomes Eq. (17). Here \([\mathbf{T}_0]\) is the initial transformation matrix based on the member’s initial position.

\[
[\mathbf{T}_n] = [\mathbf{T}_{n-1}][\mathbf{R}_n] = [\mathbf{T}_0]\prod_{i=1}^{n}[\mathbf{R}_i]
\]

\[
[\mathbf{R}_n] = \begin{bmatrix}
 r_n & 0 & 0 & 0 \\
 0 & r_n & 0 & 0 \\
 0 & 0 & r_n & 0 \\
 0 & 0 & 0 & r_n
\end{bmatrix}
\]

\[
\sin \alpha = -\frac{\Delta R_y}{\sqrt{\Delta R_x^2 + \Delta R_y^2}}, \quad \cos \alpha = \frac{\Delta R_x}{\sqrt{\Delta R_x^2 + \Delta R_y^2}}, \quad \sin \beta = \frac{\sqrt{\Delta R_x^2 + \Delta R_y^2}}{\sqrt{\Delta R_x^2 + \Delta R_y^2 + \Delta R_z^2}}, \quad \cos \beta = \frac{\Delta R_z}{\sqrt{\Delta R_x^2 + \Delta R_y^2 + \Delta R_z^2}}
\]
Based on the previous equations, the tangential stiffness equation of the member model in the global coordinate system is given by Eq. (20). The tangential stiffness matrix $[K]$ of the whole frame is obtained by summing the matrices of all members as shown in Eq. (21).

\[
\{\Delta P\} = [T_r][S]\{\Delta p\} = [T_r][S] k [\Delta d] = [T_r][S][k][S]^T [T_r]^T \{\Delta d\} \\
[K] = \sum [T_r][S][k][S]^T [T_r]^T
\]

2.5 Method of Calculation

The stiffness matrix method and the Newmark β method ($\beta=1/4$) are used to analyze time history response during 3-dimension ground motion. The unbalance force arising from the change in elasto-plastic states during each step is eliminated in the next step. Also, at each step an unloading check is performed on each spring of all MS components. If an unloading occurs at any spring, the stiffness of the spring is substituted with its unloading stiffness and the step is recalculated.

3. Parameters and Conditions

3.1 Target Frames

The target frames of this study are 4-story 6-6-3, 4-story 6-8-3, 4-story 6-6-1, 6-story 6-6-3, 9-story 6-6-3, 9-story 6-6-1, etc., the elevations and floor plans of the frames are shown in Fig. 2 and Fig. 3. Each floor is assume to have a long-term load of approximately 7 kN/m², no eccentricity, and follows the rigid floor assumption. The frames are satisfied with the building standard for Japanese seismic design code. Cold-formed square steel columns and wide flange beams are used in the frames, and the column overdesign factor (COF) at all beam-to-column connections is over 1.5.

In addition to the number of stories and floor plan, we also consider the COF as a parameter. By projecting the full plastic moments of the columns and beams onto the input direction, the COF for the input direction is calculated as Eq. (22), where θ is the angle between the input direction and the X-axis, the M_{bp} the full plastic moments of the beams around the strong-axis (see Fig. 4). The M_{cpn} are the full plastic moments of the columns around the strong-axis under the long-term axial stress. Since the axial force ratio of square tube columns in most low and mid-level buildings is 0.2 and under, their full plastic moments is nearly independent of the input direction.

\[
COF_A = \frac{M_{cpn1} + M_{cpn2}}{(M_{bpY1} + M_{bpY2}) \cos \theta + (M_{bpY1} + M_{bpY2}) \sin \theta}
\]

In the following, we call this COF projected to the input direction the appearance column overdesign factor (COF). The average COF$, which refers to the average COF of all connections excluding the connections on the roof and the 1st floor column bases, used was between 1.0 to 1.5.

![Fig.2 Elevations of frames (unit: meter)](image)

![Fig.3 Floor plans (unit: meter)](image)
It is assumed that the higher the horizontal load bearing capacity of the frame, the less plastic deformation response during earthquakes. Hence, we consider frames of similar horizontal load bearing capacity. We adjust the reduction coefficient D_s of the frames’ required horizontal load bearing capacity to $1/3$. Note that D_s is reciprocal of the R factor [22]. Under the designated average COF_A and D_s values for each input direction, the yield stress of the columns and beams are adjusted while keeping the same cross-sections.

3.2 Ground Motion Input

For the ground motion input parameter, 0 degrees (X-axis), 45 degrees, 90 degrees (Y-axis) are chosen as input direction, and BCJ L2, El Centro NS, JMA Kobe NS are chosen as ground motion types. Ground motion acceleration was adjusted to ensure the velocity conversion value V_{dm} of earthquake input energy is almost 1.5 m/s (equivalent to level 2 ground motion in Japanese standard). Here V_{dm} is given by Eq. (21), E_{dm} is the maximum earthquake input energy, and M the mass of the whole frame.

$$V_{dm} = \sqrt{\frac{2E_{dm}}{M}} \tag{21}$$

3.3 Conditions on the MS component

a) The spring components on the square tube columns and wide flange beams were assigned as in Fig.5.

b) To calculate the stiffness of the spring component, the virtual length of the component was taken to be 10% of the actual member length as based on Ref. [23].

c) Spring components were assumed to have bilinear restoring force characteristics. The ratio k_p of the gradients of the strain hardening region to the elastic region is calculated as Eq. (22) according to Ref. [24,25]. Here we consider low to mid-level buildings, with column axial force ratio $n=0.2$, beam axial force ratio $n=0$ to get $k_p=0.038$ for the columns and $k_p=0.030$ for beams.

$$k_p = 0.03 + 0.04n \tag{22}$$

3.4 Basic Properties of the Frames

Fig.6 shows the sum of the members’ energy dissipation in every floor of the original 4-story 6-6-3A frame under El Centro NS. In this paper, we use viscous damping coefficient of 0.02. We see that compared to the average COF_A of 1.94 at 0°, the average COF_A at 45° is smaller at 1.36. Hence at 45°, the energy dissipation is small on beam ends but large on the 1st floor column bases. Similar results were observed regardless of the number of stories, floor plan, and type of ground motion.

In order to study the effects of COF_A regardless of input direction, the yield stress on the columns and beams were adjusted so that the average COF_A remained at a similar level regardless of input direction in the following studies.
Fig. 6 Sum of the members' energy dissipation per floor (original 4-story 6-6-3)

Fig. 7 $\Sigma \theta_r - COF_A$ relation of 4-story 6-6-3

Fig. 8 Column $\Sigma \theta_r - COF_A$ relation
4. Results and Discussion

4.1 Member Level Damage

In this section we study the effects of appearance column overdesign factor (COF_A) on the damage of the members. The results of the time history response analysis on the 4-story 6-6-3 frame with adjusted yield stress are shown in Fig.7, which shows the relation between damage received and COF_A at each member end. Here, as a measure of damage the cumulative plastic rotational deformation Σθ_p, which is the energy dissipation by bending of the member end over its full plastic moment under long-term axial stress, is used.

From Fig.7, we see that the larger the COF_A the less damage is suffered by the columns, but more damage is suffered by the beams. Comparing Fig.7(a) to Fig.7(b) and (c), the results of BCJ L2 show two different groups of column Σθ_p (damage), while El Centro NS and JMA Kobe NS show only 1 each. Also at COF_A value around 1.0, the results of BCJ L2 show almost no damage to the beams, while El Centro NS and JMA Kobe NS show comparatively significant amounts. This is also because the nature of pulse-like ground motions El Centro NS and JMA Kobe NS which tend to cause damage on the entire frame, while BCJ L2 tends to result in cumulative damage to members with lower full plastic resistance. Similar results were observed regardless of the number of stories, floor plan, and type of ground motion.

4.2 Effect of Number of stories and Floor plan

To enable a total collapse mechanism in a frame, it is necessary to reduce the damage to the columns. In the following, we consider only the damage to columns. Fig.8 shows the relation between Σθ_p and COF_A with the results for all ground motion types in one figure for each frame. It shows that the maximum value of column Σθ_p and COF_A follow similar relations regardless of number of stories, floor plan, and input direction of ground motion.

5. Required Column Overdesign Factor

5.1 Damage Evaluation Index

In this section, we evaluate the relationship between column cumulative plastic rotational deformation Σθ_p and appearance column overdesign factor (COF_A) obtained from all our cases in order to arrive at the required COF_A. Fig.9 shows the relationship between the bending moment and the rotation of a member end with deterioration due to local buckling [25]. θ_up is the amount of plastic deformation up until the maximum bending moment in Fig.9. As suggested by [26], we take θ_up to be the cumulative plastic deformation capacity of square tube column depending on local buckling. Since deterioration behavior is not considered in 3D analysis, the Σθ_p is divided by the θ_up as a index to measure column damage.

In Japan, columns are separated into three ranks, FA (up to width-thickness ratio 33), FB (up to width-thickness ratio 37) and FC (up to width-thickness ratio 48). The frames considered in this paper mainly used FA rank columns. However in this section, since θ_up changes with the width-thickness ratio, for each rank of column we suggest the COF_A value needed to contain the damage under a specified value. By assuming that at fixed column resistance the Σθ_p remains constant regardless of width-thickness ratio, for each rank we find the value of θ_up corresponding to its border line width-thickness ratio value. Fig.10 shows the relationship between Σθ_p/θ_up and COF_A for each column rank.

5.2 Damage Probability Distribution

In this section, we analyze the probability distribution of the column damage. The main range of consideration 1.0 to 1.5 for the COF_A is split into 5 intervals. The FA rank column damage probability distribution for the whole Σθ_p/θ_up-COF_A relationship as well as each of the 5 intervals is shown in Fig.12. The probability distribution for the whole Σθ_p/θ_up-COF_A relationship shown in Fig.11(a) can be approximated using the following probability density function f(x) as Eq. (23).
Eq. (23) is the gamma distribution with shape parameter α and rate parameter β. The random variable x is $\sum \frac{\theta_p}{\theta_{up}}$, e the Napier’s constant, and Γ the gamma function. We find the values of α and β that best approximate our probability distribution. This result is shown by the broken line on Fig. 11(a). From the same figure, we also see that this probability density function Eq. (23) also approximates the probability distribution for each of the intervals. Based on this gamma distribution, the probability that x is below the mean plus two times the standard deviation is 98.2%. Hence, the required COF_A can be evaluated with a reliability index of 2.0 by drawing a 98 percentile envelope curve.

\[
f(x) = \frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^\alpha}
\]

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t} dt$$
5.3 Envelope Curve of Required COF_A

A curve of function as Eq. (25) enveloping at least 98% of the plots in each of the 5 intervals and the entire $\Sigma \theta_p/\theta_{up}$-$COF_A$ relation can be drawn in order to find required COF_A to keep the damage level below the specified value. Envelope curves of required COF_A for each width-thickness ratio rank are also shown by solid line on Fig.10.

$$COF_A = \frac{a}{\Sigma \theta_p/\theta_{up} + b} + c \quad (25)$$

For example, from Fig.12, which shows the 3 envelope curves on Fig.10 in one figure, the required COF_A for frames with D_s value of 1/3, under level 2 ground motion, to keep the cumulative plastic deformation below the performance limit is obtained as 1.40 for square tube columns of FA rank width-thickness ratio, and 1.60 for FB rank, 1.83 for FC rank, respectively.

6. Conclusion

This paper described the damage of each member by 3D analysis of steel moment frames with square tube columns, and presented seismic demand for the appearance column overdesign factor (COF_A) to keep the damage of columns below the specified limit of plastic deformation. The major parameters are COF_A of beam-column connections, number of stories, the planar shape of frames, input direction of ground motions. The major findings obtained from this study are as follows.

i) With the similar horizontal load bearing capacity of the frames, The profile of maximum value of column cumulative plastic deformation $\Sigma \theta_p$ to COF_A are nearly identical regardless of number of stories, floor plan, and input direction of ground motion.

ii) As an index to evaluate the damage of columns, the plastic deformation capacity θ_{up} of square tube columns depending on local buckling is adopted for different rank of width-thickness ratio, and the damage level of columns is defined as the value obtained by dividing $\Sigma \theta_p$ by θ_{up}. From the relationship between $\Sigma \theta_p/\theta_{up}$ and COF_A, the required COF_A to keep the damage level below the specified value is proposed for frames with D_s value of 1/3 under level 2 ground motion.

Further more, geometrical nonlinearity and the behaviors of connection panel and composite beam are not considered in this paper. These are the future tasks.

7. References

[23] Koichi Takanashi and Ken-ichi Ohi (1911): Multi-spring joint model for inelastic behavior of steel members with local buckling. *Stability and Ductility of Steel Structures under Cyclic Loading, 3*, 215-224

