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Abstract 

Nonstationary characteristics of spatially variable seismic ground motions, which are mathematically described by cross 
evolutionary power spectra or evolutionary coherency, have significant effect on earthquake responses of nonlinear 
extended structures. Estimation and modeling of cross evolutionary power spectral density (EPSD) of spatially variable 
seismic ground motions are of interest in recent years for engineering purposes. This article presents an approach for 
estimating the cross EPSD of the spatially variable seismic ground motions by using the generalized harmonic wavelets 
(GHW). The cross EPSD and the evolutionary lagged coherency of the realistic spatially variable seismic ground motions 
are estimated by this approach. The time-varying nonstationary characteristics of these ground motions are also analyzed. 
First, after a brief review of the former studies in wavelets-based evolutionary spectra estimation, a cross EPSD estimation 
formula is derived using the GHW within the framework of evolutionary spectra estimation given by Spanos & Failla. Then, 
the proposed estimation formula is used to estimate the cross EPSDs of the seismic ground motions recorded at the 
SMART-1 array during Event 45. The cross EPSDs and the evolutionary lagged coherency between the center station and 
the outer ring stations, at separation distances of 2000m, are obtained. The comparisons of the estimated lagged coherency 
at different times indicate that the correlation of the spatially variable seismic ground motions is time-dependent. During the 
stable stage of the ground-motion intensity, the lagged coherency is close to 0.8 in the low frequency range and decays as 
frequency increasing. During the rising and decaying stages of the ground-motion intensity, the lagged coherency is 
fluctuant with a mean value of about 0.4.  

Keywords: cross evolutionary power spectral density, evolutionary lagged coherency, seismic ground motion, generalized 
harmonic wavelets
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1.  Introduction 

For long-span structural analysis and design, it is necessary to consider the spatial variation of seismic ground 
motions. Usually, the earthquake ground motion field on the engineering site surface is treated as a stationary, 
homogenous and isotropy random field. The models of power spectral density, cross spectral density and lagged 
coherency are used to describe the auto- and cross-correlation properties of the ground motion random field [1]. 
However, numerous studies have shown that the nonstationary characteristics of seismic ground motions have 
significant effect on the responses of nonlinear structures and cannot be ignored, which requires that the seismic 
ground motion field should be modeled as nonstationary random field [2, 3].  

As proposed by Priestley, evolutionary power spectral density (EPSD) and cross evolutionary power 
spectral density are powerful tools to describe the nonstationarity of stochastic process or random field [4]. So 
far, several methods have been presented to estimate the EPSD of nonstationary stochastic process, including the 
wavelets-based method. Due to the time localization properties of wavelet basis, it is possible to use wavelets to 
identify the temporal variation of the spectral characteristics of nonstationary stochastic process. A general 
method for evolutionary spectra estimation using wavelets was proposed by Spanos & Failla [5], and has been 
improved for cross evolutionary spectra estimation by Huang & Chen [6]. Spanos et al used the harmonic 
wavelets (HW) and the generalized harmonic wavelets (GHW), which are both proposed by Newland [7, 8], to 
estimate the evolutionary spectra of stochastic processes [9]. The results showed that the HW and the GHW are 
effective tools for the evolutionary spectrum estimation because their spectra are nonoverlapping in the 
frequency domain. 

In this paper, the GHW is applied to estimate the cross EPSD and evolutionary lagged coherency of 
random field. The cross EPSD and the evolutionary lagged coherency of the realistic seismic ground motions 
recorded by the SMART-1 array, Taiwan, are estimated by using this GHW-based method. The time-varying 
characteristics of the evolutionary lagged coherency are presented and analyzed. 

2. Cross evolutionary power spectra estimation via GHW 

Two real-valued processes, 1( )f t  and 2 ( )f t , as defined by Priestley [4], can be expressed as 
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in which 1( , )A t , 2 ( , )A t  are amplitude envelope functions and 1d ( )Z  , 2d ( )Z   are complex-valued zero-

mean orthogonal increment random processes. The cross EPSD of 1( )f t  and 2 ( )f t  is given as [10] 
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in which 
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S   is the cross power spectral density of the stationary processes corresponding to Eq. (1), as 
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The cross EPSD, 
1 2

( )f fS  , can be estimated by wavelets. In this paper, the generalized harmonic wavelet 

(GHW) is used to estimating the cross EPSD. As defined by Newland [8], the GHW of level m, n is expressed as 
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in which k must be an integer. The Fourier transform of  Eq. (4) is 
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Fig. 1 presents the Fourier amplitude spectrum of the GHW of level m, n. In the frequency domain, the 
amplitude spectrum of the GHW is a constent during the interval  2 2m n ，  and is zero elsewhere.  

 
Fig. 1 – Fourier amplitude spectrum of the GHW of level m, n 

For a real-valued time process ( )f t , the GHW coefficients are defined as 
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( )f t  can be reconstructed by the GHW coefficients as 
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Taking Eq.  (1) into Eq. (6), 
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Due to the time localization properties of the GHW at the vicinity of ( )k n m , it is reasonable to assume 

that 1( , )A t  changes much more slowly than *
, ( ( ))m nw t k n m  , and Eq. (8) can be represented as 
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Defining ( )t k n m    , d dt  , Eq. (9) is rewritten as 
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in which 
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Eq. (10) indicates that the GHW coefficient, 1
, ,m n kc , is a nonstationary process with respect to the discrete 

time translation parameter ( )k n m . Similarly, 
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in which 
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According to Eq. (2), the cross EPSDs of 1
, ,m n kc  and 2

, ,m n kc  is 
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The instantaneous cross covariance of  1
, ,m n kc  and 2

, ,m n kc  can be calculated by 1 2

, ( , )m n

c c

k
S

n m



, as 

 
1 2

1 2

1 2 * ,
, , , ,

22 2
,

[ ] ( , ) d

4 ( ) ( ) ( , ) d

m n
m n k m n k c c

m n f f

k
E c c S

n m
k

n m W S
n m

 

   









  


    





 (15) 

Taking Eq. (5) into Eq. (15), 
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The right side of Eq. (16) is the mean value of 
1 2

( , )f fS t  during the frequency-domain interval  ,m n  at 

the time ( )t k n m  . Here, we use the mean value of 
1 2

( , )f fS t  as the estimated unsmoothed cross EPSD, 

1 2

ˆ ( , )f fS t , as 

 1 2

1 2

2

2
( , ) d

ˆ ( , )
2 ( )

n

f fm
f f

S t
S t

n m




 










 (17) 

From Eq. (16), the cross EPSD of 1( )f t  and 2 ( )f t  can be estimated by the GHW coefficients, as 
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In this paper, the GHWs with the same bandwidth   are used, which means the bandwidth n m    is a 
constant for different level m, n, and Eq. (18) can be rewritten as 
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It should be noted that Eq. (19) is available to estimated the auto EPSD of a time process ( )f t by making 

1( ) ( )f t f t  and 2 ( ) ( )f t f t , as 
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Eq. (19) and (20) can be used to estimate the evolutionary spectra of the realistic spatially variable seismic 
ground motion records. Fig. 2 presents the E-W components of the ground motion time histories recorded at 
stations C00 and O01 at the SMART-1 array, Taiwan, during Event 45 in 1986. Station C00 is at the center of 
the array and station O01 is on the outer ring. For the outer ring, the radius is 2000 m. The sampling intervals of 
these two ground motion records are both 0.01s. 
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(a)                                                                               (b) 

Fig. 2 – Time histories recoreded at stations (a) C00 and (b) O01 at the SMART-1 array during Event 45 in the 
E-W direction. 

Fig. 3 shows the estimated EPSDs of the ground motions in Fig. 2 by using Eq. (20). The frequency-
domain bandwidth   is 1 Hz and the time-domain interval 1 ( )n m  is 1 sec. The estimated EPSDs indicate 
that the energy of the ground motion at C00 distributes more concentratedly than that of the ground motion at 
O01. Fig. 4 presents the real and imaginary parts of the unsmoothed cross EPSD of these ground motions 
estimated by Eq. (19).  

                 
(a)                                                                                    (b) 

Fig. 3 – Unsmoothed EPSDs of the seismic ground motions at (a) C00 and (b) O01 shown in Fig. 1. 

            
(a)                                                                                    (b) 

Fig. 4 – (a) Real and (b) imaginary parts of the unsmoothed cross EPSD of the seismic ground motions in Fig. 2. 
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3. Evolutionary lagged coherency of spatially variable ground motions 

In earthquake engineering, lagged coherency is usually used to describe the correlation of spatially 
variable seismic ground motions instead of cross spectrum. For two nonstationary processes 1( )f t  and 2 ( )f t , the 
evolutionary lagged coherency is defined as 
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in which 
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f fS t  and 
1 2

( , )M
f fS t  are the smoothed evolutionary spectra corresponding to the 

estimated unsmoothed spectra 
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ˆ ( , )f fS t , 
2 2

ˆ ( , )f fS t  and 
1 2

ˆ ( , )f fS t . The estimated evolutionary spectra can be 

smoothed by using the M-point Hamming windows.  
The cross EPSDs of the seismic ground motions at the center station C00 and at the outer-ring stations 

during event 45 are estimated and smoothed for the evolutionary lagged coherency calculation. The outer-ring 
stations include O01, O02, O04, O06, O07, O08, O10 and O12. The 3-point Hamming windows are used to 
smooth the estimated cross EPSDs. The evolutionary lagged coherency is calculated by Eq. (21). Figs. 5 ~ 7 
present the average lagged coherency curves at different time. The lagged coherency curves of the center and the 
outer-ring stations are shown as dotted lines and the average lagged coherency curves are shown as blue solid 
lines. 

From 2 to 8 sec, as shown in Fig. 5, the average lagged coherency curves fluctuate with a mean value 
about 0.4. The decreasing tendency of the lagged coherency with increasing frequency is not remarkable. Most 
of the mean values of the lagged coherency are less than 0.6. 
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Fig. 5 – Evolutionary lagged coherency from 2 to 8 sec. 
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The average lagged coherency from 8 to 17 sec is quite different from these from 2 to 8 sec. From 8 to 17 
sec, the mean values of the lagged coherency nearby 0 Hz reach 0.8. The lagged coherency is gradually 
decreasing to 0.4 with increasing frequency in the range of 0-5 Hz and then keeps stable.  
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Fig. 6 – Evolutionary lagged coherency from 8 to 17 sec. 
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Fig. 7 – Evolutionary lagged coherency from 17 to 26 sec. 

From 17 to 26 sec, the characteristics of the average lagged coherency curves are complex. The decreasing 
tendency of the lagged coherency with increasing frequency is not as obvious as that from 8 to 17 sec and the 
mean values are mostly less than 0.6. However, from 22 to 24 sec, the lagged coherency in the low frequency 
range is high and close to 0.8 when the frequency trends to 0 Hz. 

4.  Analysis 

As shown above, the characteristics of the evolutionary lagged coherency changes with time, which means that 
the cross correlation of the spatilly variable seismic ground motions are nonstationary. Generally, according to 
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the intensity variation, a seismic ground motion process can be divided into three stages [11, 12]. In the 
beginning, the seismic ground motion starts and its intensity is increasing. Then, the intensity of the seismic 
ground motion tends to be stable for a few seconds or minutes. After that, the ground motion is gradually 
decaying. The cumulative enery curve of the seismic ground motion can show these three stages clearly. The 
cumulative energy curve of a process ( )f t  is defined as 

 2

0
( ) d

t
f    (22) 

In Fig. 8, the blue line is the mean cumulative energy curve of the seismic ground motions which are used 
to estimate the evolutionary lagged coherency shown in Figs. 5 ~7. From 4 to 11 sec, the slope of the mean 
cumulative energy curve increases, which means the intensity of the seismic ground motion becomes larger 
gradully. Then, from 11 to 20 sec, the mean cumulative energy curve changes linearly and the seismic ground 
motion comes into the indensity-stable stage. After 20 sec, the slope of the mean cumulative energy curve 
becomes small again,which indicates that the seismic ground motion intensity is decaying. 
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Fig. 8 – Mean cumulative energy curve of the seismic ground motions. 

The time points at which the characteristics of the evolutionary lagged coherency changes are still marked 
out in Fig. 8. It can be seen that, though the variation of the lagged coherency occurs about 2 sencods earlier than 
that of the ground motion intensity, the time segments in which the evolutionary lagged coherency presents 
different characteristics are consistent with the intensity-increasing, -stable and -decaying stages of the seismic 
ground motions. A possible reason for this phenomenon is that different types of earthquake waves, such as P 
wave, S wave and surface waves, arrive at the station array with time delays. The correlation and the intensity of 
each type of earthquake wave are different from those of others, which causes that the correlation variation of 
the seismic ground motions are consistent with the intensity variation. 

5.  Conclusions 

This study presents a GHW-based method for estimating the cross EPSDs of nonstationary stochastic processes. 
Applying this approach, the cross EPSDs and the evolutionary lagged coherency of the spatially variable seismic 
ground motions at the SMART-1 array during Event 45 are obtained. The estimation results indicate that the 
correlation of these ground motion records changes with time significantly. The nonstationarity of the spatially 
variable seismic ground motions is remarkable. 

The derivation of the cross EPSD estimation formula is within the framework of evolutionary spectra 
estimation proposed by Spanos & Failla. In this paper, the GHWs are used for the cross EPSD estimation. 
Because the spectra of the GHWs are nonoverlapping in the frequency domain, the cross EPSD can be 
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represented in an explcit form of the GHW coefficients instead of by solving integral equations for the genaral 
situation, which makes the cross spectra estimation formula simple and convenient for application. 

The cross EPSDs of the seismic ground motions between the center station and the outer-ring stations at 
the SMART-1 array during Event 45 are estimated by using the proposed GHW-based method. The evolutionary 
lagged coherency is calculated by using the estimated cross EPSDs and exhibits a significant change with time. 
The evolutionary process of the lagged coherency can be divided into three stages. During the first and third 
stages, corresponding to the rising and decaying stages of the earthquake ground motion intensity, the lagged 
coherency is mostly less than 0.6 and fluctuant with a mean value of about 0.4. During the second stage, 
corresponding to the stable stage of the earthquake ground motion intensity, the lagged coherency is close to 0.8 
in the low frequency range and decreases as frequency increasing. 

An apparent limitation of this study is that the spatially variable seismic ground motion records are just 
from one earthquake event. More earthquake events will be investigated in further research. Additional work is 
warranted for the determination of the parametric model of the cross EPSD or the evolutionary coherency. 
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