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Abstract 

In this paper, we present a new methodology for achieving economical retrofitting design solutions of 3-D 
irregular frames. Nonlinear fluid viscous dampers and their supporting braces are optimally distributed in 
irregular 3D frames and optimally sized. For generating optimal design solutions useful for practitioners, a 
realistic cost formulation is chosen as the objective function to be minimized. Constraints are imposed on inter-
story drifts at the peripheries. These are evaluated with nonlinear time-history analyses considering realistic 
ground acceleration records. The behavior of each damper-brace system is defined based on the Maxwell’s 
model for viscoelasticity. A fractional power-law is used to describe the nonlinear force-velocity relation of each 
damper, and the stiffening contribution of the supporting brace and of the damper is represented by linear 
springs. The damper-brace elements are divided into size-groups, that is, elements with the same mechanical 
properties. The properties of each size-group of dampers (damping coefficient and supporting brace stiffness), 
and the dampers’ distribution in the structure are optimally defined in the optimization process using Genetic 
Algorithms. The capability of the proposed methodology to achieve economical designs is demonstrated in a 
practical case. The numerical results establish also important benchmarks for other, more efficient, methods to 
be developed. 
Keywords: nonlinear fluid viscous dampers; Maxwell’s model; irregular frames; nonlinear time history analysis; genetic 
algorithm.  

1. Introduction 

Earthquakes keep on being a major source of threat for those communities located in seismic areas. Too often 
this threat results in human losses and disruption of commercial activities. It is in this context that in recent years 
performance-based design became very popular among engineers ( [1], [2]). It allows, in fact, to design buildings 
able to withstand different levels of seismic hazard with desired levels of performance, hence safety. This is also 
true in the case of existing buildings, where one of the most advantageous seismic retrofitting techniques is the 
use of passive devices. In many cases, in fact, they can prevent the need for columns and foundations 
strengthening.  

Fluid viscous dampers are a very popular type of seismic protection device. They have been successfully 
used in several branches of the U.S. military, and with the end of the Cold War in 1990 they have been 
declassified becoming available for civil purposes ( [3]). In seismic retrofitting, in particular, they proved to be 
very effective in reducing both inter-story drifts and total accelerations, [4]. However, it has been shown that the 
distribution of viscous dampers in the structure can significantly affect their efficiency, [5]. This motivated many 
researchers in developing optimization-based design approaches for seismic retrofitting with viscous dampers. 

The relevant literature can be divided into methodologies for the optimal distribution of dampers with 
given properties ( [6], [7], [8]); methodologies for the optimal distribution of dampers selecting their size from a 
given set of available dimensions ( [9], [4]); methodologies for the optimal distribution of dampers where each 
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damper is represented by an independent continuous variable ( [10],  [11]); methodologies for the optimal 
distribution and sizing of dampers where final discrete solutions are achieved either with a mixed-integer 
problem formulation ( [12], [13]) or with a continuous one  ( [14], [15]). Even though dampers are typically 
supported by braces, in the above mentioned methodologies the braces are considered as infinitely stiff. 
However, if the brace has a finite stiffness the behavior and the performance of the damper-brace system can 
differ significantly. In practice the braces have an upper limit in terms of their cross section, and the assumption 
of “infinitely stiff” brace is not always acceptable. Having a limit on the brace dimensions affects also the 
maximum acceptable damping coefficient: an unproportioned damping coefficient may cause the concentration 
of stresses and deformation in the brace leading to undesired damper-brace behaviors. This is also supported by 
recent studies where the brace cross section has been included as a design variable of the problem ( [16], [17], 
[18], [19], [10]). 

This paper is presumably the first to address the optimal distribution and sizing of nonlinear fluid viscous 
dampers together with their supporting braces. Their sizes are chosen from a limited number of size-groups, 
whose mechanical properties are also variables of the problem. A realistic retrofitting cost function is minimized 
while constraints are imposed on inter-story drifts at the peripheries of irregular 3-D structures. The structural 
responses of interest are evaluated with nonlinear time-history analyses, considering realistic ground motion 
accelerations. We thus provide engineers with a practical tool for the performance-based seismic retrofitting with 
fluid viscous dampers. Using the proposed method, practitioners can identify minimum-cost designs based on 
specific cost parameters according to the setting of the retrofitting project. 

2. Governing Equations 

In the following section we first present the model considered for the definition of the damper-brace behavior 
and the relative equations. Then, we recall the equations of motion for a structure equipped with nonlinear fluid 
viscous dampers, and subject to a realistic ground motion acceleration. The formulation presented in this paper it 
is not limited to a specific structural behavior. However, in the following we will consider a linear structural 
behavior.  

2.1 Damper-brace system characterization  

In this work we consider damper-brace systems made of two springs and a dashpot in series, as shown in Fig. 1, 
( [20]). 
  

 
Fig. 1 – Stiffening and damping contributes of the damper-brace system 

 
The first spring accounts for the stiffness of the supporting brace, while the second for the stiffness of the 
damper. Last, the dashpot accounts for the damping property of each damper. The two springs are modeled with 
a linear force-displacement behavior, while the dashpot force-velocity behavior is defined by a fractional power 
law:  
 fb = kbub 

fd = kdud 
fd = cdsign(u̇d)|u̇d|α  

  
 

(1) 

where fb is the force in the brace, and fd is the force in the damper; kb is the brace stiffness, kd the damper 
stiffness, and cd its damping coefficient; ub is the elongation of the brace, ud the elongation of the damper, and 
u̇d the relative velocity between the ends of the damper. The exponent 0 < α ≤ 1 characterizes the nonlinear 
behavior of the dashpot. For α equal to one the damper is linear, while for α that tends to zero the formulation 
mimics the behavior of a friction damper. The exponent α significantly affects the computational effort required 
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for integrating the equations of motion. The algorithm for the time-history analysis developed by the authors and 
used in this work successfully solved the equations of motion for values of α between 0.1 and 1. Herein we will 
consider α equal to 0.35, as in [21]. Because of equilibrium, the forces in the damper and in the brace are equal 
(fb = fd). It follows that: 
 
 kbub=kdud=cdsign(u̇d)|u̇d|α (2) 
 

The axial stiffness of a brace can be easily calculated. The stiffness contribute of a fluid viscous damper, 
on the contrary, is far less intuitive. It depends in fact on:  

1. The stiffness of the metal parts of the damper from one end to the other; 
2. The stiffness of the fluid column inside the damper; 
3. The expansion of the damper cylinder under pressure (which makes the fluid seem more compressible). 

Among the three components mentioned above, the second is the more complex to be defined. The fluid under 
pressure behaves according to its bulk modulus curve, which is nonlinear. However, dampers of a single 
manufacturer typically have their peak forces at similar limit pressures, and in general they are also made of the 
same materials. Thanks to this, many of the variables drop out. As a result, the end to end stiffness of a fluid 
viscous damper, as tested by Taylor Devices ( [22]), is such that it will reach its rated force at approximately 3% 
of its rated stroke from the centered position. This defines the stiffness of the damper that can be considered as a 
constant property of the device. 

The ratio between the damping coefficient of a damper and the stiffness of the damper and the brace is 
very important in the solution of the equations of motion. In fact, it affects the computational effort and the 
complexity of the integration technique required in each time step. This is particularly true in the case of 
nonlinear fluid viscous dampers. For this reason, we define a priori the ratio between the damping coefficient of 
the damper and the equivalent stiffness resulting from the brace and the damper. To pre-assign a reasonable 
value for this ratio, we consider the structure subject to the Maximum Considered Earthquake. We can thus 
calculate the maximum inter-story drift (dmax) experienced by a given structure. We then subject the damper-
brace system to a harmonic displacement history, with amplitude dmax, and as frequency the first natural 
frequency of the structure above 4Hz. It is known, in fact, that dampers behave as pure dashpots for exciting 
frequencies below a cut-off frequency of approximately 4Hz, [23]. At the maximum force, the damper will have 
a displacement between its ends equal to the 3% of its maximum stroke. For the same force, we assume that the 
brace will reach its ultimate displacement allowed (uy). That is, for Fmax in the damper-brace system we have 
that: 

• In the brace: kb= Fmax
uy

= Fmax
ϵyLb

; 

• In the damper: kd= Fmax
stroke 0.03

. 

With regards to the brace, for example: uy=ϵyLb= fy

Es
Lb= 235MPa

210GPa
6000mm=6.7mm. For the damper we consider a 

rated stroke of ±4 inches=±10.16cm. Hence: 
 
 

keq=
Fmax

ub+ud
=

Fmax

εyLb+3%stroke
=

Fmax

6.7mm+3.05mm
≅

cdsign�u̇max
d �|u̇max

d |α

10mm
 (3) 

 
In particular, the ratio ρ is: 
 
 

ρ=
keq

cd
=0.1cdsign�u̇d

max�|u̇d
max|α (4) 

 
In the last equation both ρ and u̇dmax are unknown, since they depend one upon each other. Through an iterative 
procedure is possible to evaluate both of them, as illustrated in Fig. 2: 
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Fig. 2 – Damper-brace tuning procedure 

 
Once the ratio ρ is defined, we can express keq as: 
 
 keq=ρcd (5) 
 
Therefore, for each damper-brace element the damping coefficient cd is the design variable, for a given ratio ρ 
and exponent α (Fig. 3). 
 

 
Fig. 3 – Equivalent Maxwell’s model for the brace-damper system  

2.2 Equations of motion 

We consider generic 3-D irregular frames subject to an ensemble of realistic ground motions. Their behavior is 
characterized by the mass matrix M, the inherent damping matrix Cs, and the stiffness matrix Ks. Nonlinear 
damper-brace elements are distributed in predefined potential locations of the structure. They all share the same 
ratio ρ, and exponent α, that have been already presented in Sec. 2.1. Each damper is characterized by a specific 
damping coefficient cd. 
 

 
Fig. 4 – Two degrees of freedom system with nonlinear fluid viscous dampers 

 
 
The responses of interest are evaluated with nonlinear time-history analyses. For each point t in time, the 
dynamic behavior of a structure with Ndof degrees of freedom and Nd potential location for dampers is defined 
by a set of Ndof second order differential equations, coupled with a set of Nd first order differential equations as 
follows: 
 
 Mü(t)+Csu̇(t)+Ksu(t)+TTfd(t) sin (β)=-Meag(t) (6) 
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fd(t)=D(keq) �Tu̇(t) sin(β) - �D(cd)-1D(|fd(t)|)�
1
α sign(fd(t))� 

 
In Eq. (6)  u(t) is the displacement vector of the degrees of freedom; fd(t) the vector of the resisting forces of the 
dampers; β the angle between the local degrees of freedom of the dampers and the global degrees of freedom; e 
is the location vector that defines the location of the excitation; and ag(t) is the ground acceleration. D() is an 
operator that transforms a vector into a diagonal matrix, and a diagonal matrix into a vector (as the diag 
MATLAB function does). The matrix T is a transformation matrix, that transforms the global coordinates for the 
displacements and velocities (u, u̇) into local coordinates (d, ḋ), namely inter-story drifts and velocities. In the 
example of Fig. 4 the global coordinates are u1 and u2. The local coordinates are d1 = u1, and d2 = u2 - u1. A 
similar transformation applies to u̇1 and u̇2.  

In order to be solved, the problem is first discretized in time, and then solved with the Newmark-β 
method. In particular, in each time step the equilibrium is achieved by means of an iterative procedure. In this 
procedure, in each step the dampers’ forces are approximated with a fourth-order explicit Runge-Kutta method, 
as suggested in [20]. For more details on Runge-Kutta methods please refer to [24]. The structural response is 
then corrected with the Newton-Raphson method. The iterative procedure stops when the residual forces are 
sufficiently small.  

3. Optimization problem formulation 

In this paper we formulate and solve the problem for the optimal distribution and sizing of nonlinear fluid 
viscous dampers. A realistic retrofitting cost function is minimized while selected structural performance indices 
are limited to maximum allowable values. The dampers are chosen from two available size-groups, and 
distributed in potential locations of a given structure. The properties of each size-group are also optimized and 
not predefined. Thus, in this section we present the design variables involved in the problem formulation, the 
new retrofitting cost function, and the constrained performance indexes. 

3.1 Design variables  

The goal is to size and distribute up to Nd nonlinear fluid viscous dampers in predefined potential locations of a 
given frame. They can be chosen out of two available size-groups, where for size-group we intend a group of 
dampers with the same characteristics. Therefore, we have to determine Nd damping coefficients cdi, that are 
collected in the vector cd. The vector of damping coefficients is defined as follows: 
 
 cd=c�dx1�y1+�y2-y1�x2� (7) 
 
In Eq. (7), c�d represents the maximum damping coefficient available, and it is defined a priori. The vector x1 has 
binary entries representing the existence of a damper in each potential locations. In particular, a value of zero in 
the i-th entry of the vector will mean that in the location i there is no damper, while a value of one that there is a 
damper. Also x2 is a vector with binary entries, representing the association of each existing damper to one of 
the two available size-groups. In the case of x2i equal to zero, the damper in the i-th location belongs to the first 
size-group. In the case of x2i equal to one, the damper in the i-th location belongs to the second size-group. We 
should also mention that the dimensions of the vectors cd, x1, and x2 are Nd × 1. The two available damping 
coefficients that define the two size-groups are: 
 
 cd1=c�dy1,   cd2=c�dy2 (8) 
 
In Eq. (8), y1 and y2 are two continuous design variables that scale the maximum available damping coefficient 
c�d. Last, it should be noted that the design indirectly extends also to the dampers’ supporting braces through the 
parameter ρ, as it has already been illustrated in Sec. 2.1. 
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3.2 Cost function  

One of the main contributions of the present work consists in minimizing a realistic retrofitting cost function. 
The cost function is inspired by the one presented in [13], and it is further enhanced and more realistic. 
Therefore, also in this case the cost function J consists of three cost components: 
 
 J=Jl+Jm+Jp (9) 
 

The first cost component Jl represents the cost associated with the number of locations in which dampers 
are installed. We allow the algorithm to allocate as many as one damper in each potential location; hence, this 
component includes all costs associated with the preparation of the structure for the damper installation and the 
architectural constraint that this installation will represent. Moreover, in case of retrofitting, it can also account 
for the removal of existing nonstructural components. The first component of the cost is defined as follows: 
 
 Jl=Cl

Tx1 (10) 
 
where Cl is a Nd×1 vector in which the i-th component is a cost component related to the i-th component of x1. 

The second cost component, Jm, represents the manufacturing cost of the dampers. In principle, the 
manufacturing cost of viscous dampers depends on the peak stroke and on the square root of the peak force of 
the most loaded damper of each size-groups ( [11] ). We assume, in fact, that all dampers of a specific size-group 
are designed so to have the same capacity. Since we are constraining inter-story drifts, also the peak stroke of the 
dampers is indirectly limited. As a consequence, it does not affect significantly the cost. Therefore, the 
manufacturing cost is defined as the square root of the peak force of the most loaded damper from each size-
group, multiplied by the number of dampers of each size-group. Formally, it is written as follows: 

 
 Jm=Cm �x1

T(1-x2)�max(f̂d1)�
0.5

+x1
Tx2�max(f̂d2)�

0.5
� (11) 

 
where Cm is a scalar cost component which gives the desired proportion between Jm and the other cost 
components, and: 
 
 f̂d1=D(1-x2)f̂d 

f̂d2=D(x2)f̂d 
f̂d= max

t
(|fd(t)|) 

(12) 

 
f̂d is the vector of the peak forces in time for all dampers; the vector f̂d1 has the components of f̂d which belongs 
to dampers of the first size-group, while f̂d2 those of the second size-group. It should be noted that the max 
function in Eq. (11) refers to the components of the vectors f̂d1 and f̂d2, and the result is a scalar. On the contrary, 
in Eq. (12) the max function refers to the maximum absolute value in time for each component of the vector 
fd(t), and the result is a vector. 

Modern seismic codes require to test one damper prototype for each size-group so to verify its force-
velocity behavior. As a results, we consider an additional cost component, Jp. This component is formulated so 
that the number of different size-groups of dampers used for retrofitting should be minimized: 
 
 Jp=Cp�H�x1

Tx2�+H(x1
T(1-x2))� (13) 

 
where Cp is the cost of prototype testing and design. The function H is the Heaviside step function: 
 
 H(x)= �1 for x>0

0 for x=0 (14) 
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We observe that: 

• If all dampers are of the first size then Jp will be equal to Cp × [0+1]; 
• If all dampers are of the second size then Jp will be equal to Cp × [1+0]; 
• In case dampers of both size exist then Jp will be equal to Cp × [1+1]. 

3.3 Performance index  

We are now considering the seismic retrofitting of 3-D irregular frames using nonlinear fluid viscous dampers. 
As in [15], here too inter-story drifts are used as an appropriate measure of both structural and nonstructural 
damage levels. Moreover, by limiting the inter-story drifts it is possible to constrain the response of the structure 
to a linear behavior. This can be done by limiting the inter-story drifts to the value of drift for which yielding 
occurs.  

In particular, the peak inter-story drift normalized by the allowable value is chosen as the local 
performance index for 2-D irregular frames: 

 
 dci= max

t
��di(t) dall,i⁄ ��≤1  ∀i=1,…,Ndrifts (15) 

 
where di(t) is the inter-story drift i at time t; dall,i its maximum allowable value. In the case of 3-D frames, di(t) 
refers to the inter-story drifts of peripheral frames. 

3.4 Mixed-integer optimization problem 

At this point we have presented all the ingredients of our optimization problem. The following is its mixed-
integer formulation: 
 
 min

x1,x2,y1,y2
J=Jl+Jm+Jp 

s.t.: dc,i =  max
t
��di(t) dall,i⁄ ��≤1 ∀i=1,…,Ndrifts 

x1,k= {0,1} for k=1,…,Nd 
x2,k= {0,1} for k=1,…,Nd 
0 ≤ y1

L ≤ y1 ≤ y1
U ≤ y2

L 
y1

U ≤ y2
L ≤ y2 ≤ y2

U ≤ 1 
with Mü(t)+Csu̇(t)+Ksu(t)+TTfd(t) sin(β) =-Meag(t) ∀ag∈ℇ 

ḟd(t) = D(kd) �Tu̇(t) sin(β) - �D(cd)-1D(|fd(t)|)�
1
α sign�fd(t)�� 

u(0) = 0, u̇(0) = 0, fd(0) = 0 

(16) 

 
 
where 𝓔𝓔 is an ensemble of ground motions considered; Ndrifts is the number of drifts to be constrained; and yL

1 , 
yU

1 , yL
2 and yU

2 are user-defined bounds. For optimizing the distribution and size of a single damper size-group, 
only the x1 and y1 variables are necessary, thus it can be seen as a particular case of the two-damper size-group 
optimization. The problem (16) has been solved with a GA. The results will be presented in Sec. 4. 
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4. Numerical example 

We present now a new numerical example. The goal is to show how the novel problem formulation presented in 
this paper can be effectively solved, achieving final practical solutions useful for practitioners. For the first time, 
in fact, nonlinear fluid viscous dampers and their supporting member are optimally sized and distributed into 
irregular framed structures. A new realistic retrofitting cost function is minimized while limiting the inter-story 
drifts to allowable values.  

In particular we consider an example of an asymmetric frame made of reinforced concrete, as introduced 
in [25]. This test case was also solved in [14] where a discrete distribution of linear fluid viscous dampers was 
found, and in [13] where a realistic cost function was minimized achieving also in this case a discrete 
distribution of damping. The column sizes are 0.5m×0.5m in frames 1 and 2; 0.7m×0.7m in frames 3 and 4 (see 
Fig. 5). The beam sizes are 0.4m×0.6m and the floor mass is uniformly distributed with a weight of 0.75 ton/m2. 
Regarding the ground motion acceleration, out of the ensemble LA 10% in 50 years, LA16 has the largest 
maximal displacement for reasonable values of the period of the structure. Hence LA16 was the ground motion 
to be considered first, acting in the y direction ( [26] ). In the present work, we consider 5% of critical damping 
for the first two modes in order to build the Rayleigh damping matrix of the structure. 

The algorithm used for optimization is a built-in Genetic Algorithm in the MATLAB library. The 
optimization process automatically stops when one of the following conditions is verified: the number of 
generations reaches the limit value of generations “Generations”; the weighted average change in the fitness 
function value over “StallGenLimit” is less than “TolFun”. For numerical experiments a parallel-processor 
MATLAB code was executed on Tamnun, a computer cluster hosted and maintained by the Division for 
Computing and Information System at the Technion – Israel Institute of Technology. 

4.1 Eight-story three bay by three bay asymmetric structure 

A plan and two sections of the structure to be optimized are given in Fig. 5. 16 potential locations for dampers 
were assigned at the peripheral frames in the y direction. The allowable inter-story drift dall was set to 0.035 m, 
and the maximum nominal damping coefficient to c�d=2000 kN(s/mm)α.  
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Fig. 5 - Asymmetric frame structure for the numerical example  

 
 
 
The optimization problem was solved with the following parameters: Cl=100; Cm=1 1/kN0.5;  Cp=50; 

population size = 350; maximum number of iterations = 800; to avoid solutions influenced by local minima 10 
different analyses were performed choosing the best solution among them. The variables y1 and y2 were 
bounded as follows: 0≤y1≤0.5 and 0.5≤y2≤1. Regarding the dampers, the exponent α considered was 0.35 and 
the coefficient ρ was for this example equal to 1.0765. 

Out of the 10 analyses, the analysis which led to the best solution converged after 194 generations 
obtaining the values y1=0.3183 and y2=0.50003, corresponding to the damper sizes c1=636.61 kN(s/mm)α with 
associated stiffness keq1=685.27 kN/mm), and c2=1000.06 kN(s/mm)α with associated stiffness keq2=1076.51 
kN/mm. The final value of the objective function was J= 1471.44. Looking at the results, the value of y2 is very 
close to the lower bound. It seems that the algorithm tried to reduce the value of y2 below its lower bound. We 
thus ran another set of 10 analyses, this time modifying the bounds of y1 and y2 as follows: : 0≤y1≤0.45 and 
0.45≤y2≤1. The analysis which led to the best solution converged after 182 generations obtaining the values y1= 
0.3231 and y2= 0.4977, corresponding to the damper sizes c1=646.25 kN(s/mm)α with associated stiffness 
keq1=695.66 kN/mm, and c2=995.34 kN(s/mm)α with associated stiffness keq2=1071.44 kN/mm. The final value 
of the objective function was J= 1471.35. The chosen locations of the dampers are presented in Fig. 6. The 
stiffness distribution is equivalent to that of the damping scaled by the coefficient ρ. Fig. 7 presents the inter-
story drifts of the structure with the added damping normalized by the allowable value. 

9 



16th World Conference on Earthquake, 16WCEE 2017 
      Santiago Chile, January 9th to 13th 2017 

 
 
 
 

 

 

 

 
Fig. 6 - Optimal damping distribution. The stiffness distribution is equivalent to the damping distribution, but 

scaled by the parameter ρ 
 
We can observe that the algorithm chose to allocate eight dampers in the frame, selecting three dampers of the 
first size-group and five dampers of the second size-group. The same size-group association applies to the 
coefficients of the equivalent stiffness. For this retrofitting design solution, the inter-story drifts reach the 
maximum allowable value in location 10. This solution was checked also with the other records from the 
ensemble. In all cases the peak inter-story drifts were below the allowable one.  

To further explore the capabilities of the cost function, we performed another analysis this time changing 
the value of Cp from 50 to 500. The variables y1 and y2 were bounded as follows: 0≤y1≤0.5 and 0.5≤y2≤1. All 
other parameters were not changed. As expected, the genetic algorithm converged to an optimal solution which 
involved only one size-group of dampers. The locations occupied by dampers were the same as in Fig. 6, but 
with all damping coefficients equal to c2=1096.11 kN(s/mm)α, (keq2=1179.91 kN/mm). In particular, out of 10 
analyses, the best solution was achieved after 173 iterations, with y1= 0.3752 and y2= 0.5480 and a final cost J= 
1945.39. 
 

 

 

 
Fig. 7 - Drift distribution corresponding to the optimal damping distribution 

 
The chosen locations of the dampers are presented in Fig. 8, and also in this case the stiffness distribution 

is equivalent to that of the damping scaled by the coefficient ρ. Fig. 9 presents the inter-story drifts of the 
structure with the added damping normalized by the allowable value. 
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Fig. 8 - Optimal damping distribution for Cp=500. The stiffness distribution is equivalent to the damping 

distribution, but scaled by the parameter ρ 
 

 

 

 
Fig. 9 - Drift distribution for Cp=500 corresponding to the optimal damping distribution 

 
As we already mentioned, the algorithm chose to allocate eight dampers in the frame, all of them belonging to 
the second size-group. The same size-group association applies to the coefficients of the equivalent stiffness. For 
this retrofitting design solution, the inter-story drifts reach the maximum allowable value in location 10. This 
solution was checked also with the other records from the ensemble. In all cases the peak inter-story drifts were 
below the allowable one. 

5. Conclusions 

In this paper we presented a novel, effective formulation for the minimum-cost design of nonlinear fluid viscous 
dampers and their supporting members for seismic retrofitting. The objective function of the optimization 
problem is the retrofitting cost function, and it is made of three components: The cost associated with the 
installation of a damper in a specific location in the frame; The manufacturing cost of the dampers; The cost of 
prototype design and testing. The dampers are modelled with a nonlinear force-velocity behavior defined by a 
fractional power law. Their interaction with the supporting members and the structure is accounted based on the 
Maxwell’s model for viscoelasticity. The inter-story drifts are evaluated with nonlinear time-history analyses for 
an ensemble of realistic ground motions, and constrained to an allowable value.  

Main contributions of the present work are the realistic cost function and the optimization-based design 
formulation that involves both the nonlinear fluid viscous dampers and their supporting members. As a result, we 
can provide practitioners with an effective performance-based design tool for the seismic retrofitting of generic 
3-D structures subject to realistic ground motions. The results presented herein show the effectiveness of the 

11 



16th World Conference on Earthquake, 16WCEE 2017 
      Santiago Chile, January 9th to 13th 2017 

 
 
 
 

presented approach in realistic design problems. In particular, in the example the algorithm identified minimum 
cost design solutions given the structural performance limitations. Moreover, the work presented in this paper, 
including the nonlinear damper-brace model, the problem formulation and the results attained, provide an 
important foundation for further developments on the subject. These will focus on increasing the computational 
efficiency by reformulating the problem with continuous variables. 
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