Analysis of Seismic Performance of Confined Masonry Buildings during the Wenchuan Earthquake

XIONG Lihong, ZHANG Hongyi and CHEN Guowu
(Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080)

Abstract

Abstract: In order to study the seismic performance of masonry structure, nonlinear dynamic analysis of 12 building models was carried out. Totally 6 models marked A1-A6 were chosen from affected region in Wenchuan earthquake, and the other 6 models marked B1-B6 were fictitious unconfined masonry structures having the same configuration and other characteristics as A1 to A6 except for in confinement details. Totally 20 accelerograms were collected on different soil conditions in Wenchuan earthquake were selected as input accelerations. The study focuses on two aspects: seismic response comparison between the numerical analysis results and the observations from the earthquake investigation; and the response of the confined structures and the unconfined structures to the same inputting PGA. It implied that the ductility of confined masonry buildings was significantly improved and anti-collapse capacity was enhanced comparing with the unconfined ones.

Keywords: confined masonry buildings; nonlinear dynamic analysis; Wenchuan earthquake, damage; seismic performance

Ministry of Science and Technology of People’s Republic of China, the National Key Technology R&D Program of the Ministry of Science and Technology of China under Grants No. 2015BAK17B02;
Basic research fund from Institute of Engineering Mechanics China Earthquake Administration No.2014A01,2016A06
1. Introduction

On May 12, 2008, a Ms 8.0 earthquake occurred in Wenchuan County, Sichuan Province, which induced great damage to buildings especially for masonry buildings (MBs). However, there were still some confined masonry buildings were not collapsed in areas of intensity 11.

In this paper three 3-story MBs, two 4-story MBs and one 7-story MBs were studied by nonlinear dynamic analysis. The analysis results were compared to the observations of actual damages in order to study the effect of structural column (SC) and ring beam to the seismic performance of masonry buildings. Non-linear study of other 6 models of unconfined MBs with similar geometric details as previous models were also carried out.

2. The selection of accelerograms of near-filed ground motion

Totally 20 accelerogram records of Wenchuan near-filed ground motion of different site conditions were selected. The average acceleration response spectrum was given in Fig.1. It shows that in bedrock the amplification factor of MB whose natural vibration period is less than 0.21s is larger than that in soft soil, while that between 0.21s and 0.6s was reversed. The average predominant periods of accelerograms on bedrock and soft soil site are summarized in Table 1.

![Fig. 1 – Acceleration spectra of the Wenchuan earthquake records selected in the analysis](image)

<table>
<thead>
<tr>
<th>Site type</th>
<th>number</th>
<th>near-fault ground motion(R ≤ 20 km)</th>
<th>Tg (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bed rock</td>
<td>3</td>
<td>120,142,306</td>
<td>0.14,0.18,0.19</td>
</tr>
<tr>
<td>soil site</td>
<td>17</td>
<td>105-950</td>
<td>0.22-0.42</td>
</tr>
</tbody>
</table>

3. Nonlinear dynamic analysis and comparison

3.1 Description of examples

The characteristics and parameters of the models marked A1-A6 and the compared unconfined models marked B1-B6 were shown in table 2. A1, A2, A3 are 3-story buildings, A4 and A5 are 4-story buildings and A6 is 7-story building. The plan of each model is shown in Fig.2.
<table>
<thead>
<tr>
<th>Mark</th>
<th>Height of Fortification/seismic Wall thickness & mortar strength</th>
<th>Arrangement of Structural columns (SCs) and ring beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.6 7/X 370mm in short direction, and 240mm in long direction; mortar strength: M5</td>
<td>SCs: Joints of transverse and longitudinal walls; Ring beams: every story at floor level</td>
</tr>
<tr>
<td>B1</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and longitudinal walls, No arrangement</td>
</tr>
<tr>
<td>A2</td>
<td>3.6 7/X Thickness: 240mm, mortar strength: M5</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings</td>
</tr>
<tr>
<td>B2</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings, Ring beams: every story at floor level, No arrangement</td>
</tr>
<tr>
<td>A3</td>
<td>3.2 7/IX Thickness: 240mm, mortar strength: M5</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings</td>
</tr>
<tr>
<td>B3</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings, Ring beams: every story at floor level, No arrangement</td>
</tr>
<tr>
<td>A4</td>
<td>3 7/X Thickness: 240mm, mortar strength: M2.5</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings</td>
</tr>
<tr>
<td>B4</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and external walls and both sides of big openings, Ring beams: every story at floor level, No arrangement</td>
</tr>
<tr>
<td>A5</td>
<td>3.6 7/IX Thickness: 240mm, mortar strength: M5</td>
<td>SCs: Joints of transverse and longitudinal walls; Ring beams: every story at floor level</td>
</tr>
<tr>
<td>B5</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and longitudinal walls, Ring beams: every story at floor level, No arrangement</td>
</tr>
<tr>
<td>A6</td>
<td>3 7/VIII mortar strength: M10 L1 M7.5 L2 & L3, M5 other levels</td>
<td>SCs: Joints of transverse and longitudinal walls; Ring beams: every story at floor level</td>
</tr>
<tr>
<td>B6</td>
<td>No arrangement</td>
<td>SCs: Joints of transverse and longitudinal walls, Ring beams: every story at floor level, No arrangement</td>
</tr>
</tbody>
</table>
Table 2 Values of parameters for the sample buildings used in the paper

<table>
<thead>
<tr>
<th>A1, B1</th>
<th>A2, B2</th>
<th>A3, B3</th>
<th>A4, B4</th>
<th>A5, B5</th>
<th>A6, B6</th>
</tr>
</thead>
</table>

Fig. 2 – Plan of the samples

3.2 Nonlinear dynamic analysis model and characteristic curve

Multi-degree of freedom series model was used to simulate the masonry building model in this paper. According to the references [2-6], skeleton curve with negative stiffness(Fig.3) was used to simulate the interstory stiffness of masonry building in nonlinear dynamic analysis (reference 1). Calculation of the ultimate loading capacity of confined masonry wall is referred to reference 2, in which the contribution of SCs on masonry wall is taken into consideration. Relationship between wall performance and interstory drift ratio is summarized in table 3.
3.3 Nonlinear dynamic analysis results

The calculation results of ground acceleration corresponding to different building performances during earthquake are summarized on Table 4. Typical shear force, displacement and maximum acceleration of building models under action of different PGA inputs (220Gal, 400Gal and 620Gal) at bedrock and soft soil site conditions were given in Figure 4.

![Skeleton curve for masonry walls](image)

Fig. 3 – Skeleton curve for masonry walls

<table>
<thead>
<tr>
<th>Damage degree</th>
<th>intact</th>
<th>Slight damage</th>
<th>Moderate-damage</th>
<th>Severe damage</th>
<th>Near collapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>characteristics (interstory drift ratio)</td>
<td>1/2000</td>
<td>1/1600</td>
<td>1/700</td>
<td>1/350</td>
<td>1/200</td>
</tr>
</tbody>
</table>

![Distributions of the maximum seismic responses of the selected buildings along their height](image)

Fig. 4 – Distributions of the maximum seismic responses of the selected buildings along their height
Below characters can be found from Fig.4:

1. For 3-story and 4-story MBs (A1-A5,B1-B5), responses on bedrock were more intensive than that on soil site and for 7-story MBs (A6,B6) it reversed in the same input of PGA. This is mainly due to the predominant period of bed rock accelerograms being closer to the natural vibration period of 3-story and 4-story MBs (0.16s-0.19s) and the predominant period of the soft soil being closer to the natural vibration period of 7-story MB (0.29s) in this paper.

2. Comparing the results of unconfined MBs with those of confined MBs under the same configuration and other characteristics, the responses of unconfined MBs were much more intensive than confined ones in the same input of PGAs. For example, in bedrock situation at the condition of input PGA=400Gal, the peak acceleration response of confined MBs was average 25% lower than that of unconfined ones. Results can be read that confined MBs A1-A6 reached the state of severe damage at 385-578Gal, while unconfined MBs B1-B6 reached same state at 279-430Gal.

Table 4(a) – Seismic intensities corresponding to different damage states of the studied buildings on bedrock

<table>
<thead>
<tr>
<th>Acc(Gal)</th>
<th>degree</th>
<th>A1</th>
<th>B1</th>
<th>A2</th>
<th>B2</th>
<th>A3</th>
<th>B3</th>
<th>A4</th>
<th>B4</th>
<th>A5</th>
<th>B5</th>
<th>A6</th>
<th>B6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slight damage</td>
<td>141</td>
<td>110</td>
<td>163</td>
<td>121</td>
<td>160</td>
<td>122</td>
<td>170</td>
<td>124</td>
<td>165</td>
<td>131</td>
<td>185</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Moderate damage</td>
<td>326</td>
<td>220</td>
<td>341</td>
<td>267</td>
<td>326</td>
<td>261</td>
<td>322</td>
<td>199</td>
<td>326</td>
<td>250</td>
<td>341</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Severe damage</td>
<td>520</td>
<td>311</td>
<td>539</td>
<td>371</td>
<td>508</td>
<td>324</td>
<td>505</td>
<td>294</td>
<td>468</td>
<td>327</td>
<td>489</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Near collapse</td>
<td>697</td>
<td>395</td>
<td>711</td>
<td>426</td>
<td>685</td>
<td>401</td>
<td>650</td>
<td>377</td>
<td>645</td>
<td>389</td>
<td>662</td>
<td>439</td>
<td></td>
</tr>
</tbody>
</table>

Table 4(b) – Seismic intensities corresponding to different damage states of the studied buildings on soil site

<table>
<thead>
<tr>
<th>Acc(Gal)</th>
<th>degree</th>
<th>A1</th>
<th>B1</th>
<th>A2</th>
<th>B2</th>
<th>A3</th>
<th>B3</th>
<th>A4</th>
<th>B4</th>
<th>A5</th>
<th>B5</th>
<th>A6</th>
<th>B6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slight damage</td>
<td>168</td>
<td>135</td>
<td>190</td>
<td>153</td>
<td>185</td>
<td>154</td>
<td>182</td>
<td>130</td>
<td>173</td>
<td>140</td>
<td>145</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Moderate damage</td>
<td>352</td>
<td>258</td>
<td>372</td>
<td>285</td>
<td>360</td>
<td>280</td>
<td>330</td>
<td>210</td>
<td>340</td>
<td>263</td>
<td>261</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>Severe damage</td>
<td>565</td>
<td>356</td>
<td>578</td>
<td>430</td>
<td>541</td>
<td>371</td>
<td>523</td>
<td>309</td>
<td>521</td>
<td>342</td>
<td>385</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Near collapse</td>
<td>726</td>
<td>481</td>
<td>746</td>
<td>508</td>
<td>716</td>
<td>479</td>
<td>681</td>
<td>405</td>
<td>670</td>
<td>404</td>
<td>591</td>
<td>372</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Results compared with actual building damage in earthquake

Three typical examples (A3, A5 and A6) with different number of stories were selected to compare with actual damage during earthquake. According to the investigation results, all these three buildings were at the stage of severe damage.

Distributions of maximum interstory drift ratio along building height were given in Fig.5. According to GB 50011-2011, the input value of PGA=220Gal/400Gal/620Gal is corresponding to intensity VII/VIII/IX.
Based on calculation, it can be found from Fig. 5 that:

1. When the input PGA is 220Gal and the building located at soft soil site, the 1st floor of A3 and A5 were slightly damaged and the other floors were at the stage of intact. The 1st floor of A6 was intact but the 2nd and 4th floor were moderate-damage, and the other floors were slight damage.

2. When the input PGA is 220Gal and the building located at bedrock, the 1st and the 2nd floors of A3 were slight damage and the other floors were at the stage of intact. The 1st floor of A5 were slight damage and the others were intact. The 7th floor of A6 were intact but other floors were slight damage.

3. When the input PGA is 400Gal and the building located at soft soil site, the 2nd and the 4th floors of A6 were severe damage. It is mainly due to the strength of mortar in the damaged floor was lower than that in adjacent lower floor; The model building performance fitted well in with the real responding in earthquake site.

4. When the input PGA is 400Gal and the building located at bedrock, the 1st, the 2nd, the 4th and the 5th floors of A6 were moderate-damaged; the 3rd and the 6th floors of A6 were slight damage, and the 7th was at the stage of intact.

5. When the input PGA was 620Gal, the 1st floor of both A3 and A5 was severe damage. It fitted in well with the real building performance at earthquake site.

Some typical seismic performances of the buildings were selected in figures 6 to 8.

Fig. 5 – Distributions of the maximum interstory shift of the selected buildings along their height

(a) A3 (b) A5 (c) A6

Fig6. – Damage of A3 Fig7. – Damage of A5

Fig8. – Damage of A6
3.5 Seismic resistance of confined MBs

1. SCs and ring beams significantly improved the integrity and ductility of MBs and also enhanced the
 loading capacity. Therefore confined MBs presented good performance under strong earthquake. The results
 from the nonlinear time history analysis showed that at bedrock, confined MBs A1 to A6 would be at the stage
 of severe damage when the input acceleration reached 520Gal
 separately. While for unconfined MBs B1-B6, the building would be at the stage of severe damage when input
 acceleration reached 311Gal, 371Gal, 294Gal, 327Gal and 349Gal; If the building was at soft soil site,
 confined MBs A1-A6 would be severe damage when ground acceleration was above 565Gal, 578Gal, 541Gal,
 523gal, 521Gal and 385Gal separately. While for unconfined MBs B1-B6, the corresponding acceleration was

2. The contribution of SCs to the building resistance was ignored at ultimately limit state in Current code[1].
 The calculation of the additional resistance from SCs and ring beams were considered in this paper and the
 results were verified by earthquake disaster observation.

3. A1, A2 and A4 were chosen from seismic intensity X; A3 and A5 were chosen from seismic intensity IX; and A6 was chosen from seismic intensity VIII, all of them were higher than the fortification intensity 7.
 However, due to the contribution of SCs, the buildings were seriously damaged but no one collapsed. It verified
 that confined MBs had good seismic performance.

4. Conclusions

In this paper, totally 20 typical near-field ground motion accelerograms on both bedrock and soft soil sites
were selected for the nonlinear dynamic analysis of 12 confined and unconfined MBs. Comparing with the
seismic disaster investigation results, below conclusions can be drawn:

1. The damage levels of model buildings were generally coordinated with the investigated seismic
 performances of studied buildings, which proved that the model and parameter chosen for the analysis were
 reasonable.

2. Comparing with unconfined MBs, the seismic capacity of confined MBs were improved significantly
 due to the contribution of SCs and ring beams. For example, in bedrock situation at the condition of input
 PGA=400Gal, the peak acceleration response of confined MBs was average 25% lower than that of unconfined
 ones.

3. The calculation in the paper considered the contribution of SCs to the shear resistance of walls. And the
 results were closer to the actual seismic response of MBs comparing with the calculation without the
 consideration of SCs. Suggestion recommended that SCs should be considered when calculating shearing
 capacity of confined masonry walls.

5. References

Earthquake engineering and engineering vibration, 2004,31 4: 82
Earthquake engineering and engineering vibration, 2011,24 1: 1
the brick wall under horizontal load” [J]. World Journal of Earthquake Engineering, 1988, 4: 5
