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Abstract 
Direct numerical simulation of wave propagation in highly heterogeneous media demands very fine discretization in space 
and time, and scalability of all steps of a numerical simulation, including the pre- and post-processing. In this paper, we 
integrate the following elements in a scalable parallel workflow: an octree meshing scheme, a random field generator for 
mechanical properties, and a spectral element solver for wave propagation. The hexahedral meshing algorithm includes the 
consideration of topography, bathymetry, coastlines and wave velocity variation with depth. The random field generator 
allows to modify locally (in space) the value of a given realization. Numerical simulations and scalability studies are 
presented for each and all components of the seismic simulation workflow.  

 

Keywords: Meshing, Random media, Elastic wave propagation, Parallel computing, Scalability analysis  



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

2 

 

1. Introduction 
Exploration of the structure of the Earth using seismograms recorded at the surface is a classical problem in 
geophysics. Its applications range from the scientific understanding of Earth's interior to more industrially-
oriented questions related to oil exploration or CO2 and nuclear waste sequestration. Current methods of elastic 
tomography in geophysical media are mainly based on the arrival times of the first waves. With this information, 
geophysicists manage to represent reasonably well very low-frequency waves using, e.g., spherically-symmetric 
Earth models with homogeneous layers. At a more regional scale, seismic tomography methods such as Reverse 
Time Migration yield reasonably accurate models of underground mechanical structures, such as those found in 
oil reservoirs. However, geological observations as well as recordings in the higher frequency range indicate a 
strong heterogeneity of the crust [1]–[7]. Recent inversion techniques try to go beyond classical identification 
methods by considering full waveform inversion [8] rather than relying on first arrivals only, and to identify 
finer-scale structures. 

The most obvious impact of these heterogeneities is the creation of the coda [9]–[11], which is a 
seemingly random wave train behind the first coherent arrivals, and may last much longer than the first pulses. 
More generally, the heterogeneities have a large influence on the wave fields at the surface [12], and their 
consideration in an inversion scheme requires a profound understanding of that influence. Based on asymptotic 
analyses, theoretical models have been introduced, such as radiative transfer and diffusion models [13]–[15]. 
Although these models are difficult to use in actual inversion schemes because they are derived in theoretical 
settings (unbounded domains and material isotropy for instance), they help acknowledge the fact that the 
influence of the small scale heterogeneities is statistical in nature. This means that different materials with 
similar statistical distribution of the parameters would yield statistically similar features of the wave field. In an 
inversion scheme, one should therefore be more interested in identifying the statistical parameters of these small-
scale heterogeneities rather than point-wise values. For classical inversion methods based on direct numerical 
simulations and minimization of a cost function, one is therefore led to consider large scale wave propagation 
simulations in realizations of random media. 

Research effort has been devoted to the development of high performance schemes for large scale wave 
propagation. Solvers can now scale efficiently over very large clusters [16]–[18]. The pre- and post-processing 
steps have not necessarily followed the same pace. Although various techniques and algorithms have been 
developed [19], octree-based meshing has recently demonstrated improved capabilities for scaling over today's 
largest machines [20]–[25]. The need to generate randomly heterogeneous fields of mechanical parameters for 
geophysics has emerged later [6], [26]–[32] and scaling of the current algorithms has only been recently tackled 
[33], [34]. The scalability of the entire wave propagation workflow is limited by its slowest link. The main 
objective of this paper is therefore to demonstrate the scalability of each and all of the ingredients of the 
simulation and to integrate them seamlessly. Along the path, improvements on the meshing algorithm and 
random field generation will be presented, specifically tailored for geophysics applications. This includes the 
consideration of topography, bathymetry, coastlines and wave velocity evolution with depth for the meshing 
algorithm, and introducing the possibility of modifying locally (in space) the value of a realization of the random 
field. 

The remainder of this paper is organized as follows. In the next section, we briefly review the elastic wave 
equations and the spectral element approximation that is chosen for this work. Section 3 describes our parallel 
octree-based mesh generator. We introduce in Section 4 our parallel random field generator. A numerical 
simulation example is presented in Section 5 and the paper ends with a summary of our main conclusions and 
future research directions. 

2. Spectral element solver for elastic wave propagation 
Elastic wave propagation describes the evolution in a domain 𝛺 and over a time interval 0, 𝑇  of a displacement 
field 𝑢 𝑥, 𝑡  driven by the following equation (1): 

 𝜌 𝑥 𝑢 𝑥, 𝑡 − 𝛻 ∙ 𝜎 𝑥, 𝑡 = 𝑓 𝑥, 𝑡  (1) 
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when submitted to loading 𝑓 𝑥, 𝑡  and initial conditions 𝑢 𝑥, 𝑡 = 0 = 𝑢/ 𝑥  and 𝑢 𝑥, 𝑡 = 0 = 𝑣/ 𝑥 . In this 
equation, the superimposed dot stands for derivation with respect to time and the stress tensor 𝜎 𝑥, 𝑡 =
𝐶 𝑥 : 𝜖 𝑥, 𝑡  is related to the strain tensor 𝜖 = 𝛻𝑢 + 𝛻𝑢5 2  through the constitutive tensor𝐶 𝑥 . In 
geophysics, 𝛺 is usually partly unbounded, and a homogeneous Neumann boundary condition 𝜎 ∙ 𝑛 = 0 is 
considered at the free surface 𝛤. 

In this paper, we use the spectral element method (SEM) [35], [36]. A conformal hexahedral mesh is 
constructed (see Section 3), and the approximation in space of Eq. 1 is performed using Lagrange polynomials of 
high order (typically order 5 to 7) over elements of that mesh. The nodes of the Lagrange polynomials are those 
of the Gauss-Lobatto-Legendre (GLL) quadrature so that  𝑁: 𝑥: = 1, and 𝑁: 𝑥:<= = 0 for all polynomials 𝑁: 

and quadrature points 𝑥:. The stiffness matrix 𝐾 is defined by 𝐾:= = 𝛻𝑁:? : 𝐶: 𝛻𝑁=𝑑𝛺. The mass matrix 𝑀 is 

defined by 𝑀:= = 𝜌𝑁:? ∙ 𝑁=𝑑𝛺. The integrals are evaluated with the GLL quadrature corresponding to the 
nodes of the polynomials so the mass matrix is naturally diagonal. 

For time discretization, we consider a second-order explicit scheme. This scheme is conditionally stable 
under the Courant-Friedrich-Levy (CFL) condition 𝛥𝑡 ≤ 𝛼ℎ 𝑣F, where ℎ is the smallest distance between two 
GLL nodes, 𝑣F is the largest wave velocity (P-wave velocity for isotropic materials), and 𝛼 is a safeguard  
constant, usually taken as 𝛼 = 0.25 for SEM simulations [37], [38]. To cope with the truncated domain, we are 
using Perfectly Matched Layers (PMLs) [39], in a stress-velocity formulation [40]. These developments were 
implemented in a parallel code developed jointly by Commissariat à l''Energie Atomique, Institut de Physique du 
Globe and CentraleSupélec. This code was used to simulate the passage of a seismic wave in a sedimentary 
basin over 2048 cores [42]. Table 1 shows good scalability of the solver up to 4096~cores for a 3D simulation of 
wave propagation in a homogeneous space with 7 GLL nodes in each direction and element and with no PMLs. 
These scaling tests were performed on Tera100 (at Bruyères-le-Châtel, France) a BULL machine equipped with 
almost 140,000 Intel Xeon 7500 processor cores. 

 

Table 1 - Wave propagation simulation times per time step 

Cores DOFs Elements Avg. Min 

   Time [s] Time [s] 

32 36,026,967 55,296 0.204 0.198 

128 141,137,643 221,184 0.212 0.200 

512 558,508,233 884,736 0.256 0.208 

4096 4,527,010,569 7,077,888 0.362 0.256 

 

3. Scalable parallel mesher for geophysical applications 
Meshing is particularly hard considering high-resolution wave propagation problems using conformal hexahedra 
in realistic Earth geometries [19]. Here, high resolution means meshes containing several billions of elements. 
For such large meshes octree-based algorithms seem to be particularly susscessful [22], [23]. Octrees are spatial 
data structures used in various problems in computer science and engineering, e.g., object representation, image 
analysis and unstructured meshing [41]. Standard octrees divide a cell into eight new cells. However, it has been 
shown that a 3-octree, defined as a data structure where a cell is divided into 27 new cells [42] is more suitable 
for hexahedral mesh generation. 
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3.1 Mesh with depth-dependent element size 
For wave propagation problems, the main parameter controlling the size of the elements is the wave velocity. In 
geophysical problems, there is on average a gradient of this velocity with depth, with lower velocities closest to 
the surface of the Earth. In this first step of our procedure, we therefore aim at constructing a mesh where the 
elements are homogeneous along the horizontal planes and are larger in depth than close to the surface. The 
construction must also avoid hanging nodes, since the SEM code discussed in Section 3 requires a conformal 
mesh. The procedure to create the hexahedra starts with the finest cells (closest to the surface). Every m meters 
(input parameter, chosen by the user and related to the wave velocity map), a transition layer is introduced. This 
layer is composed of cells shown in Fig 1 (and based on [19]), that allow to reduce the size of the elements 
between two layers. The whole process is done in parallel. The domain is initially partitioned in a 2D grid among 
processes, and the construction is done independently by each process. The output of this step of the construction 
is a structured mesh. 

 
Fig 1 - 13-cell  template  used  in  the  transition  layers  between coarse and fine elements. 

3.2 Consideration of topography and ocean level 
In order to represent realistic Earth geometries, a smooth scheme [43] is used to fit the octree mesh with a 
surface triangulation (STL) generated from SRTM3 topography data [44] sampled at three arc-seconds, and 
obtained from United States Geological Survey [45]. This STL file includes the topography (inland heights) and 
the altitude is set to zero over oceans and seas. The output of this step of the construction is still a structured 
mesh, but with deformed elements. 

3.3 Consideration of bathymetry and material interfaces 
Realistic meshes of the Earth must also include the representation of the bathymetry, as well as various materials 
interfaces [46] inside the Earth (e.g. basins inducing strong site effects, Moho discontinuity, or others). With 
respect to the mesh constructed at the previous step, the bathymetry can be seen as material discontinuity 
(between solid and fluid) so we only describe in this paper the inclusion of bathymetry. The bathymetry is 
defined through a STL surface, constructed from the SRTM30_PLUS model [47], a 30-arc second resolution 
global topography/bathymetry grid obtained from Scripps Institution of Oceanography, University of California 
San Diego [48]. This STL surface is defined on a regular grid and is modified in the following manner: nodes at 
vanishing altitude are added along the coastline, using the information stored in the SRTM water body 
database [49], and inland nodes are removed. A 2D Delaunay triangulation is then used to construct a new STL 
containing only the fluid-solid interface. Other types of material or interface discontinuity can be treated 
similarly, through the definition of an appropriate STL file.  

Some of the hexahedra constructed at the previous step are intercepted by this STL surface. For the final 
mesh to conform to the material interface, these hexahedra should be further divided. We have implemented 
three subdivision templates that cover all the possibilities for an intersection between a hexahedron and the STL 
surface. These templates are shown in Fig 2. Template 1 is applied when the STL surface cuts four non-
contiguous edges and cuts the original element in two new elements. Template 2 is applied when the STL 
surface intercepts all the faces connected to the same edge and cuts the original element in three new elements. 
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Template 3 is applied when the STL surface intercepts all the faces connected to the same vertex and cuts the 
original element in four new elements. If some of the new elements are degenerated and show angles equal or 
above 180° a pillowing technique can be used [50]. After this entire process, the MESQUITE library [51] may 
be used to relocate vertices and improve the mesh quality. 

 

 
Fig 2 - Subdivision templates used for separating subdividing hexahedra crossed by the material interface. The 

colors indicate different materials and the grey surface indicates the material interface. 

3.4 Example of mesh generation 
The final mesh is a non-structured hexahedral mesh, conformal to the topography, bathymetry and coastlines and 
with coarsening of the elements with depth. An example of mesh generated with the proposed scheme is 
presented in Fig 3. This mesh was generated on Occigen (at CINES, France), a BULL machine equipped with 
2106 computing nodes. Each Occigen node has two Intel Haswell (E5-2690) processor (12 cores per node), 
totalizing 50544 cores. The example considers Kefalonia region in Greece (between N 38°00'00 E 20°00' and N 
39°00' E 21°00') in a cube of approximately 110 X 110 X 110 km3. The bathymetry goes down to 3790 m and 
the topography up to 1620 m. The mesh grading with depth, as well as the features of the topography and 
bathymetry can be seen in – Meshing example of Kefalonia region in GreeceFig 3. 

            
Fig 3 – Meshing example of Kefalonia region in Greece, the zoom shows how mesh changes with depth. 

 

3.5 Weak scalability analysis 
We perform a weak scalability analysis of the parallel mesh generator on Occigen for the same case discussed in 
Section 3.4 (Kefalonia region in Greece). We analyse how the CPU time varies with the number of cores for a 
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constant amount of data per core. In our analysis, this amount of data is defined by the number of elements 
resulting from the  meshing algorithm. Table 2 shows the growth in problem size according to the number of 
cores. Note that, for each increase in the octree refinement level, the mesh size grows by a factor of 9, reaching 
62 billions of hexahedra at level 10. Table 2 also presents the overall CPU time (in seconds) for runs 
instrumented by TAU performance analysis system [52], [53] on Occigen, using its standard configuration on 
this system. Although the run time increases almost 3 times when refinement levels increase from 7 to 9, note 
that, for each level, the mesh size grows by a factor of 9, while the number of cores increases only by a factor of 
3. From 9 to 10 refinement levels, we observe that both the mesh size and cores grow by the same factor. In this 
case, the additional refinement level increases run time in about 20%. Table 2 also reveals that increasing the 
number of octree levels does not increase the computation/communication ratio, which stays below 30%. 

 

Table 2 - Weak scaling of the mesh generation for the Kefalonia region in Greece. 

Cores Levels Nodes Elements Time [s] Comm(%) 

81 7 85,602,744 83,102,679 12.061 21 % 

243 8 769,790,232 747,937,476 32.994 20 % 

729 9 6,926,153,724 6,731,438,013 105.188 25 % 

6561 10 62,330,385,168 60,583,119,264 123.066 29 % 

4. Scalable parallel random field generation 

4.1 Classical schemes for random field generation 
For direct numerical simulation in highly heterogeneous media, realizations of stationary random fields of 
mechanical properties (for example Lamé coefficient 𝜇 𝑥 ) with given statistics have to be generated at 𝑁F 
points in 𝛺. These points are the GLL integration points used in the wave propagation solver to assemble the 
mass and stiffness matrices. The statistics are usually the average and the autocovariance 𝑅 𝑥  of the mechanical 
properties. There are essentially two classes of techniques, either generating in the space domain or in the 
spectral domain, but all relying on the generation of a Gaussian random field 𝑔 𝑥  and its subsequent 
transformation through a point-wise non-linear map (e.g., the Rosenblatt transform [54]) into the desired first-
order marginal density, for example log-normal, for the mechanical property at hand. In the former case [61], a 
covariance matrix 𝑅 is assembled, such that 𝑅:= = 𝑅 𝑥: − 𝑥= , where the {𝑥:}NO:OPQ are the 𝑁F points where the 
random field is to be generated. The most computationally intensive part of the generation algorithm in space is 

the Cholesky factorization of 𝑅, which scales as 

𝑁

𝑂 𝑝 3  in the general case, but can be improved to sub-

𝑁

𝑂 𝑝 2  using a polynomial approximation of the Cholesky factor [33]. On the other hand, working in the 

wave number domain, the spectral representation technique [55] expands the random field 𝑔 𝑥  as Equation 2:  
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 𝑘V ∙ 𝑥 + 𝜙V
2𝑆 𝑘V ∨ ∆𝑘 ∨ 𝑐𝑜𝑠	

𝑔 𝑥 =
VOP

 

(2) 

where the spectral domain 𝑘 is discretized over a regular grid of size 𝑁 = 𝑁_, 𝑁`, 𝑁a  and indexed by 𝑛 =
𝑛_, 𝑛`, 𝑛a , 𝑆 𝑘V  is the power spectral density of the random field (Fourier transform of 𝑅 𝑥 ), ∆𝑘 ∨ is the unit 

volume in the spectral domain and the random variables 𝜙V are the independent elements of a 𝑁-dimensional 
random variable with uniform density over 0,2𝜋 . The complexity of that generation scheme in the space 

domain is 

𝑁

𝑂 𝑝 2  and can be improved to 𝑂 𝑁𝑙𝑜𝑔 𝑁  using the Fast Fourier Transform [55]. In that latter 

case, since the GLL points are not uniformly distributed in space, the random field must be generated on a 
uniform grid before it is interpolated at the desired 𝑁F GLL nodes. 

4.2 Localization of the random field generation 
When propagating waves over distances much larger than the correlation length of the mechanical properties, the 
number of GLL points 𝑁F increases, even for low frequencies. Indeed, both the wavelength and the correlation 
length must be resolved by the mesh. As the generation schemes are all super-linear, they become a bottleneck 
for the kind of simulations considered in Table 2. The scalability issue arises because the random field is 
assumed correlated over the entire domain 𝛺. In most interesting cases, however, the correlation length is much 
smaller than the characteristic domain size. It is then possible [34] to generate realizations of 𝑔 𝑥  over the 
entire domain as superpositions of 𝐼 smaller independent realizations 𝑔: 𝑥  supported on overlapping 
subdomains 𝛺: of 𝛺: 

 𝑔 𝑥 = 𝜓: 𝑥 𝑔: 𝑥
:∈g

 (3) 

where the set of functions 𝜓: 𝑥  forms a partition of unity of 𝛺 (that is to say 𝜓: 𝑥 = 1:∈g  for any 𝑥 ∈ 𝛺), 
supported by the set of subdomains 𝛺:. Using this approach, the complexity becomes 𝑂 𝑛F𝑙𝑜𝑔	 𝑛F  where 
𝑛F = 𝑁F 𝑃 and 𝑃 is the number of processors. Essentially, this means that the scheme is 𝑂 1  when we 
consider a constant number of GLL nodes per processor. The overlapping Eq. 3 involves an approximation that 
does not alter the average and variance of the resulting field 𝑔 𝑥  [35]. The influence on the correlation structure 
depends on the overlap, relative to the correlation length. Theory and numerical tests have shown [35] that a 
transition volume of 5 to 10 correlation length is enough to make statistics homogeneous over the whole domain. 

An illustration of Equation 3 is presented in Fig 4 for two processors in 1D. The first processor generates a 
field 𝑔N 𝑥  over [0-125] km, the second processor generates a field 𝑔i 𝑥  over [25-150] km, and the 
overlapping area is [25-125] km. The partition of unity is composed of linear functions 𝜓N 𝑥  and 𝜓i 𝑥 = 1 −
𝜓N 𝑥   in the overlap. The upper plots of Fig 4 present in thin continuous lines the two fields 𝑔N 𝑥  (top left) and 
𝑔i 𝑥  (top right), as well as the functions 𝜓N 𝑥  (top left) and 𝜓i 𝑥  (top right) in dashed lines. The lower 
plot of Fig 4 presents the field 𝑔 𝑥  reconstructed over [0-150] km using Equation 3. Finally, an example of a 
3D realization is presented in Fig 4. 
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Fig 4 - Generation of two independent samples (thin solid lines) 𝑔N 𝑥  (top left) and 𝑔i 𝑥  (top right), with their 

respective weight functions 𝜓N 𝑥  (top left) and 𝜓i 𝑥  (top right) (dashed lines). The thick solid lines 
represent the products 𝜓N 𝑥 𝑔N 𝑥   (top left) and 𝜓i 𝑥 𝑔i 𝑥  (top right) and the reconstructed global 

random field 𝑔 𝑥  (lower plot) given by Eq 3. 

 

 
Fig 5- Example of 3D random field generated over 27 procs using the localized approach. The cube edge length 

is 70 km and the correlation lenth is 1 km. The sampling took 9 minutes (Wall time). 

 

Note that the generation of the local fields 𝑔: 𝑥  in this paper are performed with the spectral representation 
methods. However, Equation 2 could be replaced without any difficulty by any other method, such as those 
based on the Cholesky factorization. 

4.3 Weak Scalability Analysis 
We perform a weak scalability analysis of the random field generator on Igloo cluster (Intel Xeon X7542 
2.66Ghz/800 cores) to compare the standard generation with the one using the localized approach. The 
difference is clear. The expected 𝑂 1 scalability is proven by the the plateau showed in Fig 6 and as a result the 
properties generation suits large scale problems.  
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Fig 6 - Weak Scaling without localization (WEAK 3D FFT-g) and with localization (WEAK 3D FFT-l). The 

number on each point is the number of processors. 

4.4 Parameterization in space of the random germs 
One interesting advantage of the spectral representation is that it parameterizes the random field directly as a 
function of the strength of the heterogeneities for different wave numbers. This is interesting for identification in 
regimes (such as radiative transfer or diffusion) where interaction of waves and heterogeneities are determinant. 
However, the parameterization with phases 𝜙V is not so classical. In the context of identification of mechanical 
properties, it is more interesting to update values of the parameters in a given area of the domain.  

The impact of this parameterization is illustrated on Fig 7. Two realizations of the same random field 
(same statistics) are generated with exactly the same values of 𝜙V (before the Fourier transform), except in the 
area limited by the black circle. The two realizations are represented in the left and center plots of Fig 7. The 
difference between the two images (in absolute value) is plotted in the rightmost plot, with white indicating no 
difference. It appears clearly that the modification of the value of 𝜙V in a specific area of the grid impacts the 
value of the realization of the random field only in that area, as desired. 

     
Fig 7 - The left and center plots show two realizations of a random field that only differ within the black circle. 

The rightmost plot shows the absolute value of the difference between the two samples (white indicates no 
difference). 

5. Large scale mesh and wave propagation application 
In this section, we illustrate the interest of the tools developed in the previous sections through wave simulations. 
We consider the Kefalonia region, described in Section 3.4 and aim at simulating the propagation of waves in 
different frequency regimes and at different levels of description of the crust.  

The first model we consider is a coarse model, for a simulation in the low-frequency regime. We assume 
isotropic behavior and constant material parameters in the soil (𝑣F = 5.8 𝑘𝑚 𝑠, 𝑣m = 3.2 𝑘𝑚 𝑠, 𝜌 =
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2600 𝑘𝑔 𝑚o) and the water (𝑣F = 1.4 𝑘𝑚 𝑠,  𝜌 = 1020 𝑘𝑔 𝑚o). The seismic signal is a Ricker (second 
derivative of a Gaussian function), centered at 0.3 Hz, and with maximum frequency close to 1 Hz. As the 
properties are constant with depth, no grading is necessary, except that there are two different materials. As we 
use 5 GLL nodes per direction and element, the element size should be approximately equal to one minimum 
wavelength. So we choose the element size at the bottom as 𝜆mr:s = 6𝑘𝑚, and the smallest elements as 𝜆mr:s =
2𝑘𝑚. This is obtained through 4 levels of refinements, and one transition layer just below the water level. The 
Ricker signal is translated in time by 𝑡/ = 3𝑠. Simulation results can be seen on Fig 8. 

 
Fig 8 – Wave propagation simulation over Kefalonia (Grece) region.  

6. Conclusions 
In this paper we developped tools for wave propagation simulation over large heterogeneous domains. A mesher 
using an octree approach was tailored to take into account both bathymetry and topography. Scalability tests 
show that the developed mesher is suitable to simulation over large memory-distributed clusters. To represent 
Earth crust media heterogeneity a random field generator was built. A scalability issue in generating random 
properties was identified, as in the best case random field generation scales as 𝑂 𝑁𝑙𝑜𝑔 𝑁 . To make random 
properties generation scalable the “localization method” was implemented. It glues several independently 
generated fields together and has a 𝑂 𝑁  scalability by block. An adaptation of the classical spectral 
representation allows to modify locally (in space) the value of a given realization. We consider that the 
developed tools, octree meshing scheme, random field generator and spectral element solver, are adapted for 
large scale simulations. 
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