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Abstract 
The deck-abutment contact (e.g. pounding) during earthquake shaking often triggers the rotation of the deck. Contact at the 
deck level might alter dramatically the effective mechanical system activating unforeseen, in the design stage, behavior. 
This discrepancy between the assumed during design seismic behavior, and the actual seismic behavior governed by the 
nonsmooth planar deck dynamics, can be detrimental leading even to deck unseating/collapse. The impact-induced rotation 
mechanism is usually encountered in skew bridges, but it is observed also in straight bridges. As a reference, the 2013 
experimental shake-table study of a four-span straight bridge by Saiidi et al. [1] showed unexpected large in-plane rotations. 
This resulted in significant residual displacement of the bents. The present paper simulates the response of that benchmark 
straight bridge in an attempt to capture the deck-abutment impact and the subsequent in-plane rotation. The study brings 
forward the (friction-based) physical mechanism behind the rotation of straight bridges which is usually ignored during 
design and analysis. In this context, it extends a previously established nonsmooth rigid body approach to account for the 
different excitations at the bottom of the bents and the abutments. The results shed light the role of friction on the impact-
induced rotation mechanism, and underline the importance of devising practice-oriented procedures for considering during 
seismic design the potential in-plane deck rotation of even straight bridges. Finally, the study also investigates the 
sensitivity of the rotation with respect to the coefficient of friction value. 
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1. Introduction 
Contact (e.g. impact/pounding) either between adjacent deck segments or between deck and abutment occurs 
often during earthquakes [2, 3]. Contact has direct and indirect consequences on seismic response. A direct 
consequence is local damage: crushing of concrete around the contact area, shear-key damage, or even, abutment 
tilting. Often more important though, are the indirect consequences, since contact alters drastically the effective 
mechanical system, activating unforeseen, in the design stage, behavior. This discrepancy between the assumed 
seismic behavior during design, and the actual seismic behavior triggered by contact, can be detrimental for the 
bridge, leading even to deck unseating/collapse [4, 5, 6]. A characteristic example is the seismic response of 
skew bridges with joints, where due to the earthquake-induced pounding, skew deck segments tend to stick at the 
obtuse corner and rotate, as rigid bodies, in the direction of increasing the skew angle [4, 7]. Interestingly, this 
rotation-mechanism is not exclusive to skew bridges. Both straight, as well as, curved in-plan, segmental 
bridges, might suffer also from contact-induced rotations as certified by the Chi-Chi (1999) [8] and the 
Wenchuan (2008) [9] earthquake.  

 Motivated by the extensive damage after the 1971 San Fernando earthquake [4, 10], Maragakis et al. [11], 
examined analytically the deck-abutment interaction of short skew bridges. They [11] argued that the deck-
abutment pounding could produce considerable in-plane deck rotations and subsequently transverse deck 
displacements. Following [11] many studies verified that a skew deck increases the possibility of coupling 
between the response displacements and the in-plane rotation (e.g. [12] among others). Further, [13] concluded 
that the deck-abutment contact reduced by two-thirds the ultimate load capacity of skew bridges and, in addition, 
it introduced failure mechanisms unseen to similar straight bridges. Kaviani et al. [14] noted the detrimental role 
of the skew angle on the deck rotations, on the column drift ratio and the collapse probability of the bridge.  
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 Even though, the role of the in-plane dynamics of the deck, and the associated rotation mechanisms 
activated by the earthquake-induced pounding has been highlighted more than 20 years ago (e.g. [4]), it still has 
not received the attention it deserves in literature. A key study for the present research is the insightful 2013 
experimental study [1] (large-scale shake-table tests) of a 4-span straight bridge. Saiidi et al. [1] reported 
significant in-plane rotation of the deck (maximum about 0.6°) triggered by deck-abutment contact, and leading 
to unexpected lateral displacements of the bents and severe damage to the columns. It is particularly interesting 
that the deck of the bridge was not skew. Among all potential influential factors, including the asymmetric 
stiffness and the slight spatial variation of the examined excitations, the frictional deck-abutment contact forces 
(and the produced torsional moment) were found to be the main reason of the (substantial) deck rotation about its 
vertical axis. In other words, [1] verified experimentally, for the first time, the potentially detrimental indirect 
consequences of (deck) contact in the seismic response of (straight) bridges.  

 Key of any numerical/analytical study of pounding bridge-segments is the simulation of the contact/ 
impact phenomenon at the deck level. Most studies model solely the behavior in the normal direction of contact, 
adopting a gap element (‘compliance’) approach; i.e. a stiff spring (sometimes combined with a dashpot) 
working only in compression and activated after the gap-closure. The deck-abutment interaction or in-deck 
contact is usually simulated either with a single gap element in each corner of the deck [15 ~ 18], or with 
multiple distributed gap elements aligned perpendicularly to the contact surface in [13, 14, 19, 20]. More 
sophisticated finite-element simulations have also been proposed for the pounding in segmental straight bridges 
[21, 22]. The recent study of [21] adopted a detailed three-dimensional finite-element model of the bridge and 
the contact between adjacent bridge girders.   

Following a different approach, [23 ~ 25] deployed a nonsmooth dynamics framework to capture the 
pounding-induced in-plane rotation of skew bridges. The [23, 24] studies considered the unilateral 
contact/impact between a planar rigid body and a rigid half-space (the abutments), as the archetypal mechanical 
configuration of the deck-abutment impact. They revealed that the tendency of pounding deck segments to rotate 
depends on the total geometry of the deck in-plan, and not on the skew angle alone. Further, [23 ~ 25] showed 
that similar impact-rotation mechanisms characterize both frictionless impacts, as well as, the more complex 
case of frictional impacts. 

 The motivation for this study originates from the increased examples of (skew or straight) bridges 
suffering pounding-induced in-plane deck rotation and the associated need to comprehend the seismic deck-
abutment contact interaction. In particular, the scope of the present paper is to advance our understanding of the 
contact-triggered rotation of the deck of straight bridges and the influence of friction. Such rotations are typically 
ignored in the design practice. In this context, the present study extends the nonsmooth dynamics framework of 
[23 ~ 25] in dealing with the multi-support excitation of the bents and the abutments of a bridge system. 

2. Motivation and Background 
Saiidi et al. [1] tested experimentally a conventional 4-span reinforced concrete (RC) bridge. The (1/4-scale) 
bridge model (Fig. 1) is a 32.2-m-long, 2.4-m-wide, RC bridge with a straight continuous post-tensioned 
superstructure supported on three 2-column bents. The different bent heights result in a slight eccentricity of the 
center with respect to the center of mass of the bridge. Independent shake tables control the acceleration (in both 
the longitudinal and the transverse directions) of each bridge bent at its base, while separate actuators control the 
displacement (solely in the longitudinal direction) of each abutment. The input excitation uses 7 sets of ground 
motion records, with the target peak ground acceleration (PGA) in the longitudinal direction varying from 0.09g 
to 1.20g. Note that the input excitations simulate historic ground motion records from the 1994 Northridge 
earthquake. 

 Of particular interest for the present study, is the substantial in-plane rotation reported in the experimental 
tests [1] despite the fact that the deck was not skew. During the first two excitations, no severe pounding occurs 
thus the recorded rotation is not large. These rotations are attributed to the stiffness asymmetry and the slightly 
different input ground motions among the three shake tables. However, during the later excitations the deck-
abutment interaction becomes more severe. The peak response rotation reaches approximately values of 0.01 rad 
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(0.63°) and the residual rotation values of about 0.005 rad (0.20°). Part of the motivation for the present study is 
to bring forward the physical mechanism behind these unexpectedly high rotations. 

3. Proposed Approach 
The two most commonly used methodologies for studying the impact phenomenon between adjacent structures 
(e.g. deck-abutment interaction) are: (a) the contact element (or compliance) approach, and (b) the nonsmooth 
approach. The former relies on the use of “contact/gap elements” comprised of a spring and a dashpot to 
simulate the impact force [26]. The present study adopts the latter methodology, which is a momentum-based 
method, and originates from multibody dynamics with unilateral contacts [27]. The proposed approach adopts 
the principles of nonsmooth dynamics and deploys an event-based analysis framework. An event-based 
methodology [28 ~ 30] decomposes the dynamic response into continuous motion (without impact) and 
discontinuous events such as impacts (i.e. instantaneous contact). Section 3.1 offers the equations of motion for 
the continuous smooth response, while Section 3.2 deals with the discontinuous nonsmooth events. Importantly, 
during impact, the proposed methodology focuses on the impulses transferred and bypasses the need to calculate 
the forces during impact which are unpredictable and frail in nature. On the contrary, during continuous contact, 
the impact forces enter the equation of motion in the form of Lagrange multipliers. 

3.1 Smooth response 
Consider the conceptual bridge model of Fig. 2, subjected to different ground motion excitations (multiple-
support excitation ug1 ~ ug3) at the three-bent supports and the two abutments. Let the motion of the system be 
described with respect to an absolute reference frame (denoted with superscript a). The (Newton-Euler) equation 
of motion for this multiple-support system with unilateral contacts can be expressed as: 

 [ ] 0
 

− − − = 
 

λ
Mu F F W W

λ
 Na

D S N T
T

 (1) 

where  M  is the mass matrix, ua  is the displacements vector with respect to the absolute system of reference,  
FD  and  FS  are the vectors of the damping and the restoring force, WN  and  WT  are the direction matrices of 
the contact (constraint) forces in the normal (subscript N) and the tangential (subscript T) direction, respectively. 
Subscripts “N” and “T” are used in the same way throughout the study. λN  and  λT  are the contact force vectors 
along the two directions of contact and are treated as Lagrange multipliers. These contact forces enter the 
equation of motion only for active continuous contacts. 

 
Fig. 1 – The 4-span straight bridge configuration tested experimentally in [1] 
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3.2 Nonsmooth contact events 
Assume that during seismic excitation the deck and the abutments behave as rigid bodies with negligible 
structural deformation. This assumption is verified, at least for the deck, with the experimental results reported in 
[1]. In particular, the recorded response rotation (in [1]) of the left and the right halves of the deck is identical, 
indicating that indeed the structural deformation of the deck is negligible. Further, let the deck-abutment 
interaction follow the principles of unilateral contact [27], i.e. the contacting bodies cannot overlap; imposing a 
kinematic impenetrability constraint. Note that the local deformation the contacting bodies undergo at the impact 
points is assumed negligible in the body's scale [31]. 

 Fig. 2 also shows the conceptual model of the examined bridge system (e.g. the left upper corner of the 
deck is in contact with the left abutment). The deck (rigid body j = 2) has three degrees of freedom (u2 = [x2, y2, 
θ2]T): the two lateral translations along x and y axes, and one in-plane rotation. Recall that the abutments are 
excited individually by controlling their displacement along solely the longitudinal direction, but they rotate due 
to pounding during the experimental tests. Therefore, let  x1, x3  and  θ1, θ3  be the longitudinal displacement and 
the in-plane rotation of abutment “1” and “3” respectively. In summary, the generalized coordinates vector for 
the abutments and the deck with respect to an absolute reference frame (superscript a) has total 7 DOFs: ua = [x1, 
θ1, x2, y2, θ2, x3, θ3]T. Subsequently, the relative distance vector (gN) can be expressed as: 

 T=g W ua
N N  (2) 

 The proposed approach departs from a conventional response history analysis once deck-abutment contact 
is detected. Contacts are distinguished into instantaneous (i.e. impacts) and of finite duration (i.e. continuous 
contacts) events. During impacts, all non-impulsive forces are considered negligible, wave effects within the 
body are ignored and the position of the contacting bodies is assumed fixed. Under these assumptions, impacts 
induce sudden, velocity changes (‘jumps’) making the response discontinuous (nonsmooth). 

 
Fig. 2 – Deck-abutment rigid (unilateral) contact interaction 
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 The proposed approach formulates both types of contacts (impacts and continuous contacts) as pertinent 
Linear Complementarity Problems (LCPs). A LCP consists of determining two unknown non-negative vectors  x 
≥ 0  and  y ≥ 0  satisfying the complementarity condition: yTx = 0, from a system of linear equations  y = Ax + b  
with matrices  A  and  b  known [32] (see for example Eq. (6) and Eq. (9) in the following). The present study 
solves numerically the proposed LCPs with the aid of Lemke’s pivotal algorithm [32]. As the study shows later 
on, the proposed LCPs encapsulate a great variety of post-impact states, such as impact, detachment, bouncing, 
full contact and transitions between different states (such as sliding and sticking contacts). 

3.2.1 LCP for impact 
Under the assumptions of this study, impacts result in instantaneous velocity changes (‘jumps’). Thus, impact 
events are not described by the equation of motion (Eq. (1)). Instead, the integration of the equations of motion is 
interrupted, and the solution of the pertinent LCP returns the post-impact state, which becomes the new initial 
condition for the re-initiation of the time-integration. 

 The proposed approach adopts Newton’s law in the normal direction of impact and Coulomb’s friction 
law in the tangential direction. According to Newton’s impact law the ratio of the relative normal contact 
velocity vector before (ġN

- ) and after impact (ġN
+ ), is equal with the coefficient of restitution  εN: 

 + −= −g g N N Nε  (3) 
Let  vN  denote velocity jumps along the normal direction of contact: 

 + −= +v g g N N NN ε  (4) 
The LCP which captures the impact-induced velocity jumps, treats frictional impacts on a velocity level (see also 
[23 ~ 25]) and encompasses different impact states such as slip, stick and reversal of sign, both for single and 
double impacts: 
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where  μ�  = diag�μi�  is Coulomb’s coefficient of friction and  ε̿ = diag{εNi} with  i  being the index of the impact 
points, ΛN  and  ΛT  stand for the normal and the tangential impulse, ġTR

+   and   ġTL
+   are the positive and the 

negative parts of the tangential post-impact velocity (see also [23 ~ 25]), ġT
-   is the tangential pre-impact 

velocity; E  is the identity matrix, and the  G  matrices are: 

 
1 1

1 1
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− −

= =
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T T
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,
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 (7) 

3.2.2 LCP for continuous contact and detachment 
On the contrary, continuous contacts produce contact forces of finite magnitude and duration which enter the 
equations of motion (Eq. (1) through the  λ  vector) as Lagrange multipliers. When the state of contact changes, 
e.g. a transition occurs between sticking/sliding contact, or from closed to open contact (named detachment), the 
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value of the contact forces and the corresponding new initial conditions are determined with the aid of the 
pertinent LCP, established on the acceleration level. Specifically, let  λN  denote the contact force vector along 
the normal direction of contact and  λH  the frictional force vector of sticking contacts along the tangential 
direction. Then the LCP that treats continuous contact and detachment is: 
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with, 

 = + +W W W WQ N G G H Hµ µ  (10) 

where  g̈N  is the relative (contact) acceleration vector in the normal direction  g̈HR  and  g̈HL  the positive and the 
negative parts of the tangential (contact) acceleration vectors respectively. WH  and  WG  are the direction 
matrices, and  𝛍�𝐻  and  𝛍�𝐺  are the diagonal matrices with the coefficients of friction for the potential sticking 
contacts (subscript H) and sliding contacts (subscript G). 

4. Numerical Simulation of Pounding-Induced Rotation 
4.1 Analytical modelling 
The proposed methodology (Chapter 3) is implemented on the 4-span straight bridge [1, 33] (of Chapter 2). Fig. 
3 presents the global model, including the deck, the two abutments and their actuators, and the six columns. 
There are 4 potential contacts (gN1  to  gN4). The motion of the left abutment, the deck and the right abutment are 
expressed by  u1 = [x1, θ1]T, u2 = [x2, y2, θ2]T  and  u3 = [x3, θ3]T, respectively, based on the rigid-body 
assumption (Section 3.2). The mechanical configuration of Fig. 3 is subjected successively to seven excitations, 
reproducing the testing procedure followed in the experiments of [1]. 

 
Fig. 3 – Analytical model of the 4-span straight bridge with 4 contact points 
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 The concentrated mass at the center of the deck, including the additional mass blocks upon the deck, is  
m2 = 140.5 t  for the translational directions while the mass moment of inertia about the vertical axis is  I2 = 
13090 t·m2 (see [1, 33]). For all 6 columns, Takeda hysteretic models [34] with initial stiffness equal with the 
post-crack stiffness are assigned along both the longitudinal and the transverse directions, and an elastic torsional 
stiffness behavior is assumed. 

 The abutments are modelled as planar rigid blocks (m1 = m3 = 0.65 t  and  I1 = I3 = 0.31 t·m2) connected 
to two sets of translational spring-damper systems, simulating the longitudinal and rotational stiffness and 
damping properties of the actuator behind each abutment. The deck-abutment interaction is treated as unilateral 
contact according to the proposed nonsmooth approach (refer to Section 3.2). The initial gap between deck and 
abutment is designed as 0.0127 m in the experimental test [1]. However, during the successive experimental tests 
the gap sizes varies. Thus, the initial gap values during the analysis are updated to match the measured gap sizes 
at the 4 corners at the beginning of each excitation. Rayleigh damping is applied as in [33], calculating the mass 
and the stiffness proportional coefficients for 2% damping at the first and the third mode. The assumed base 
excitation of each bent is the measured displacement of the shake tables during the tests. The input in the 
longitudinal and the rotational directions of the two abutments is back-calculated from the experimental 
measurements of the gap [1].  

4.2 Preliminary analysis ignoring deck-abutment interaction 
Before simulating the actual response recorded during the shake table tests, which includes the nonsmooth deck-
abutment interaction, the simulation of the smooth response is first examined. Specifically, the proposed 

 
Fig. 4 – Comparison of calculated response ignoring the deck-abutment interaction during Excitation No. 4:  

OpenSees [33] vs. proposed analysis 
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analytical model (of 7 DOFs) is compared with a pertinent OpenSees model of the same bridge system from [33] 
both ignoring the deck-abutment interaction. Fig. 4 shows the response history of the translational displacement 
(Fig. 4 (a) ~ (b)) and the rotation of the deck (Fig. 4 (c)). In addition, Fig. 4 (d) ~ (e) plots the force-displacement 
loops of one column of Bent 1 (as an example), as calculated with the present model and with the fiber 
modelling of [33]. All results of Fig. 4 concern the response during Excitation No. 4, which is characterized by 
moderate PGAs in the longitudinal and the transverse directions (respectively 0.60g and 0.50g) compared with 
the other six excitations considered in this study. 

 Fig. 4 (a) ~ (c) illustrates that the longitudinal displacement, the transverse displacement and the rotation 
in the proposed analysis generally match the OpenSees results. However, note that differences between the 
residual values among the two simulations exist and they are more important in the presence of the deck-
abutment interaction later on. Also, Fig. 4 (d) ~ (e) shows that in general the proposed analysis leads to 
somewhat higher restoring force. This is attributed to the fact that the adopted column modelling considers the 
post-crack stiffness of the column as the initial stiffness and ignores the biaxial interaction. However, the 
vibration characteristics of the deck, as well as, the peak response are well captured by the proposed analysis. 
The results for the other six excitations are similar, but omitted for brevity. 

4.3 Proposed seismic response analysis including the deck-abutment interaction 
This section presents the response as calculated with the proposed approach (Section 3.2), taking into account 
the deck-abutment interaction. As a first approach the coefficient of friction is taken as  μ = 0.5 (later a 

 
Fig. 5 – Comparison of response-history with deck-abutment interaction during Excitation No. 4:  

experiment [1] vs. proposed analysis 

0 5 10 15 20 25 30

time (sec)

 0.00
 0.02
 0.04
 0.06
 0.08

g
N

4
 (m

)

0 5 10 15 20 25 30

time (sec)

 0.00
 0.02
 0.04
 0.06
 0.08

g
N

3
 (m

)

0 5 10 15 20 25 30

time (sec)

 0.00
 0.02
 0.04
 0.06
 0.08

g
N

2
 (m

)

0 5 10 15 20 25 30

time (sec)

 0.00
 0.02
 0.04
 0.06
 0.08

g
N

1
 (m

)

0 5 10 15 20 25 30

time (sec)

-0.002

 0.000

 0.002

 0.004

ro
ta

tio
n 

(ra
d)

0 5 10 15 20 25 30

time (sec)

-0.06
-0.04
-0.02
 0.00
 0.02
 0.04
 0.06

di
sp

la
ce

m
en

t (
m

)

0 5 10 15 20 25 30

time (sec)

-0.06
-0.04
-0.02
 0.00
 0.02
 0.04
 0.06

di
sp

la
ce

m
en

t (
m

)

(a) longitudinal displacement

(b) transverse displacement

(c) rotation

(d) relative distance of point 1

(e) relative distance of point 2

(f) relative distance of point 3

(g) relative distance of point 4

experiment present analysis sticking contactfrictional impact/contact

8 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

parametric study about  μ  is performed). Noticing that during the experimental test contacts were continuous 
(meaning of finite duration), the coefficient of restitution (ε) is estimated as zero. 

 The experimental and the (proposed) analytical results of Fig. 5 are based on the following calculation 
assumptions: The longitudinal response displacement of the deck is taken as the average of the two 
displacements measured at the two ends of the deck. The transverse displacement is equal with the one measured 
at the middle of the deck, and the in-plane rotation is calculated from two transverse displacements measured at 
two ends of the deck. The input motion of the abutments is back-calculated from the measured relative distance 
between the abutment and the deck. The spring-damper properties of each abutment represent the behavior of the 
actuator which is solely active in the longitudinal direction. The stiffness of the springs are calculated from the 
measured force (via load cell) and displacement during the experiments [1]. The rotation of the abutment is the 
result of deck-abutment contact. 

 Fig. 5 compares the analytical with the experimental results for Excitation No. 4. All contact events (i.e. 
frictional impacts/contacts) are indicated with crosses. Sticking contacts in particular (including both the 
immediate sticking contact after an impact, and the transition from a sliding contact into a sticking contact), are 
shown with filled blue circles. The events at all 4 points are plotted simultaneously for the response of the deck 
in Fig. 5 (a) ~ (c), while the events at solely each contact point are plotted for the pertinent relative distance in 
Fig. 5 (d) ~ (g). Fig. 5 (a) and (b) show that the current simulation reproduces well the response of deck in both 
the longitudinal and the transverse directions. The calculated rotation of the deck (Fig. 5 (c)) is in close 
agreement with the experimental results until about 11.0 sec, when the peak deck rotation occurs. Hence, the 
proposed analysis provides a good estimation of the peak deck rotation, despite the multiple (discontinuous) 
contact events preceding the appearance of the peak. From about 11.0 to 13.0 sec the analytical cannot match the 
experimental results. Fig. 5 (d) ~ (k) plots the relative gap distances and again, the proposed simulation is, in 
general, in good agreement with the experimental results. The conclusions from the comparison of the remaining 
six excitations are similar, but are omitted for brevity. 

 Further, Fig. 6 compares the deck response at 10.02 sec during Excitation No. 4 when the in-plane deck 
rotation starts increasing rapidly, to elucidate the contact-induced rotation mechanism. At this particular time 
instant, the deck is (according to the proposed analysis) moving toward left (vx2 = -0.0099 m/s) and upward (vy2 
= +0.0038 m/s), with an anti-clockwise angular velocity of  vθ2 = 0.0076 rad/s. The deck (at Point 1) is sticking 
with the left abutment. The frictional force (λT1 = 530 kN) prevents the left end of the deck from moving 
upward, resulting in further anti-clockwise in-plane rotation of the deck. 

 Fig. 7 summarizes the peak deck rotation (for all 7 excitations) versus the PGA of the input motion in the 
transverse direction. For reasons of comparison with [1], the abscissa of Fig. 7 reads in terms of the target PGA 
and not the feedback PGA (i.e. the one actually recorded during the tests). According to the experimental tests 
[1] the peak rotation increases exponentially with PGA. The calculated peak in-plane rotation ignoring the deck-
abutment interaction (see Section 4.2), also superimposed in Fig. 7, exhibits a different trend. When the deck-
abutment interaction is ignored the peak deck rotation is approximately proportional to the PGA, and noticeably 
smaller than that when the deck-abutment interaction is considered. This observation, together with Fig. 6, 
indicates the contact-induced frictional forces increase notably the tendency of the deck to rotate in-plane. The 

 
Fig. 6 – Comparison of deck response during Excitation No. 4: proposed analysis (deformation, response 

velocities, contact forces) vs. experimental result [1] (deformation only) 
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proposed approach reproduces closely the same pattern with the experimental results, within some reasonable 
accuracy, in spite of the particular discrepancies in the response-history of some excitation cases (e.g. in Fig. 5). 

 Overall, the qualitative but also quantitative comparison between the analytical and the experimental 
results verifies the ability of the proposed approach to capture the deck-abutment interaction. Note the multiple 
sources of uncertainty between the proposed herein analytical approach and the independent experimental study 
which might directly and/or indirectly affect the comparison. For instance, several parameters, such as the 
coefficient of friction which is assumed as constant in the proposed analysis, may vary significantly even during 
the same excitation as the deck rotation changes and the contact area is damaged locally. The observed 
discrepancies pinpoint directions of further research but also might indicate the sensitivity of the contact-induced 
in-plane rotation. 

4.4 Parametric study on coefficient of friction 
This section investigates the sensitivity of the in-plane rotation of the deck to the coefficient of friction value. 
Specifically, Fig. 8 plots the percentile increase of the peak rotations (for all 7 excitations) compared to the peak 

 
Fig. 7 – Peak deck rotation vs. target PGA 

 
Fig. 8 – Percentile increase of peak rotation vs. coefficient of friction 
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rotation without deck-abutment interaction (Section 4.2), versus the coefficient of friction (μ). The examined 
values of the coefficient of friction range from 0.0 to 0.7 with a 0.1 interval. The PGA in the longitudinal 
direction is shown in the parenthesis. The thick continuous line represents the average increase. Excitation No. 1 
(PGA = 0.09g) does not result in increased in-plane rotation, since the contacts between the deck and the 
abutment are not severe. On the other hand, the increase of the peak rotation for the remaining six excitations is 
significant. Excitations No. 3 and No. 4 yield the highest increase even though they are of moderate PGAs; the 
peak rotation increases by approximately 3 times when  μ = 0.5, 0.6 or 0.7. In general, the peak rotation rises 
rapidly with the coefficient of friction until  μ = 0.4. For higher values of the coefficient of friction, the peak 
rotation saturates at around 200%.  

5. Conclusions 
The present paper deploys a nonsmooth rigid body approach, for the response-history analysis of a bridge system 
with multi-support excitation at the bottom of the bents and the abutments. The proposed analysis simulates the 
response of a benchmark straight bridge, tested experimentally by other researchers. The study brings forward 
the physical mechanism behind the rotation of straight bridges taking into account the frictional deck-abutment 
contact and the consequential in-plane rotation of the deck. 

 Overall, the proposed analysis captures qualitatively the contact-induced rotational behavior of the deck, 
and quantitatively reproduces, with reasonable accuracy, the peak rotations recorded during the benchmark 
experimental test. Discrepancies in the rotation response-history between the analytical and the experimental 
results are also noted. The results underline the importance of devising practice-oriented procedures for 
considering during seismic design the potential in-plane deck rotation of even straight bridges, even for straight 
bridges and shed light on the role of friction on the contact-induced rotation mechanism. The study also 
investigates the sensitivity of the contact-induced rotations to the values of the coefficient of friction. The results 
suggest that the peak rotation increases rapidly with the coefficient of friction  μ  when  μ  is smaller than 0.4, 
but saturates for higher values.  
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