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Abstract 
An active control scheme using ANN is presented for seismic control of building frames for future earthquakes. 
It is based on the premise that if the desired control force and the future earthquake excitations have the similar 
frequency contents, it is likely that the control force of the system will be most effective. Based on that premise, 
it is assumed that the shape of the PSDF of the control force is the same as that of the PSDF of ground motion 
representing the future earthquake. This assumption makes also the control problem to be site specific. The 
control scheme developed has the advantage that it can consider limited number of feedback measurements, time 
delay effect, and target reduction in response. The ANN control scheme requires feedback responses 
(displacement, velocity and acceleration), ground excitation and a target percentage reduction as inputs to the 
ANN. The output of the ANN is the time history of control force. A ten-story building frame is taken as an 
illustrative example. Feedback responses are taken from 1st, 5th and 10th stroys of the frame. The control is 
affected by a single control force applied at the top of the building frame with AMD. The results of the study 
show that (i) the control scheme is very effective in controlling the response of the building frame for excitations 
under El Centro earthquake taken as an unknown problem; (ii) The peak control force required to obtain a 
significant percentage reduction in response is not very large.; and (iii) Time delay (of the order of 2Δt; Δt time 
step interval) does not significantly deteriorate the performance of control scheme. 
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1. Introduction 
Active control of building frames using artificial neural network (ANN) has been a subject of intensive research. 
In the past, numerous applications of ANN for structural control are reported in the literature. In the earlier 
works Ghaboussi and Joghataie, Chung et al., Bani-Hani and Ghaboussi, Yu-Ao He and Jianjun [1-6] developed 
online control using ANN with emulator neural network. Dong – Hyawn Kim et al. [7] replaced the emulator 
neural network with a sensitivity evaluation algorithm and applied it to a multi -degree of freedom structure. 
Chang et al. [8] used recurrent neural network models for structural control. Alok Madan [9] used steepest 
gradient descent scheme for minimizing a cost function for training of multilayer feed forward neural networks 
for active control in multi-degree of freedom systems. Hyun Cho et al. [10] presented neural network active 
control of structures under earthquake excitation in which optimum number of the neurons in the hidden layers 
was determined considering the control performance criteria. Rao et al. [11] have developed a procedure for 
active control of structures using two sets of neural networks for general stochastic simulations of earthquake 
based on Kanai Tajmi power spectral density function. Sridhar and Hasan [12] proposed an adaptive output 
feedback scheme that uses radial basis function neural nework for the control of a class of non linear systems. 
Jagannathan [13] developed a multilayer neural nework controller again for a class of non linear systems. 

Some of the recent works on the structural control using ANN combined with the genetic algorithm and fuzzy 
logic include the work of Chen et al. [14] on modified intelligent genetic algorithm based adaptive ANN control 
of uncertain system structures; Chen C.W. [15] on neural network based fuzzy logic parallel controller for 
structural system; Wang et al. [16] on self constructing wavelet ANN algorithm for non linear control of large 
structures; Chang et al. [17] on active control of building structures using probabilistic ANN and Baghban et al. 
[18] on nonlinear control of structures using neuropredictive algorithm.  

Not much work on the use of ANN for structural control using single ANN and limited measurements of 
feedback responses with direct incorporation of time delay effect, a target percentage reduction and site specific 
condition are reported in the literature. Keeping these in view, a simple ANN based control scheme using a 
single ANN is presented here. It is capable of handling directly the time delay effect, working with a limited 
number of feedback measurements and providing a target reduction of response quantity of interest. The ANN 
based controller duly takes into account the site specific future earthquake represnted by its PSDF. The proposed 
method is developed and tested for multistorey frame controlled by an AMD placed at its top. The effectiveness 
of the control scheme is evaluated by taking a 10-storey building frame as an illustrative example. 

2. Theory 
The control scheme is illustrated with the help of a multistorey building frame as shown in Fig 1. The control 
force is applied at the top of the frame using an AMD. The feedback responses, measured from three points, are 
shown in the figure. Inputs to the ANN are the feedback controlled responses from the three points, the ground 
acceleration and the target percentage reduction of the top story displacement response. 
The controlled responses are obtained by solving the following equation of motion: 
 

 uHxIMYKYCYM g +−=++                                    (1) 
 
where M, C and K are, respectively, mass, damping and stiffness matrices corresponding to the sway degrees of 
freedom of the frame; u is a single time history of the control force applied through AMD; H is a vector of size n 
whose all elements are zero except the nth element which is unity; Y is a vector of sway displacements of the 
frame and gx is the ground acceleration. 
The controlled equation of motion is solved using SIMULINK toolbox of MATLAB. For using the SIMULINK, 
the mass, stiffness and damping matrices need to be defined explicitly. For this purpose, damping matrix is 
obtained by assuming it to be mass and stiffness proportional and is determined by using the first two undamped 
modes and frequencies of the MDOF system.  
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In Eq. (1), gx  is the record of ground acceleration for earthquake. In case of instantaneous control, depending 
upon the measured responses at any time t, the control force, u(t), acts on the system. The inputs to the ANN are 
the measured responses, i.e. displacement, velocity and acceleration at time t, and the measured ground 
acceleration at the same time. When the control scheme is not an instantaneous one but incorporates time delay 
in it, then u(t) is the predicted control force at time t from the neural-net with input to the ANN as structural 
displacement, velocity, acceleration and ground acceleration recorded at a previous time station (may be at  t – 
∆t or t – 2 ∆t, depending upon the time delay considered in the study). The training data is generated from 
possible future earthquakes at the site of interest. 
 
Possible future earthquakes at the site is generated by assuming the future earthquakes to be a stationary random 
process, having a power spectral density function (PSDF), 

gXS  , of the form 
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Eq. (2) is after Clough and Penzein [19] which they used to represent the double filtered ground motion, in 
which S0 is the PSDF of the white noise; ss ωω=ρ / , and gg ωω=ρ / , and sgg ωζω ,,  and sζ are the filter 
coefficients for the second and the first filters, respectively. The parameters sgg ωζω ,,  and sζ  duly take care of 
the site soil condition. The future earthquakes are synthetically generated from the PSDF given by Eq. 2 using 
Monte Carlo simulation. Depending upon the site condition, different forms of PSDF may be considered. Even 
non-stationary model of future earthquakes may be incorporated by using a modulation function. 
 
If the desired control force and the future earthquake excitations have the similar frequency contents, it is likely 
that the control of the system will be most effective. Therefore, for effective control of the system to future 
earthquakes, the desired control force may be assumed also to be a stationary random process with a PSDF (Su) 
having the same form as given by Eq. (2). Thus, time histories of control forces can be synthetically generated 
from the PSDF of the control force. Note that both 

gXS   and Su can be expressed by the same expression (Eq. 2), 
by simply changing the parameter S0 , i.e. for ground acceleration S0 may be denoted by S0g, and for control 
force it may be denoted by Sou. For a given PGA, S0g can be determined using the standard procedure explained 
in Appendix - I. Sou for the control force can be obtained for different assumed values of peak control force 
(taken as a fraction of the weight of the mass of MDOF system). The procedure is similar to that given in 
Appendix - I. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Schematic diagram of control scheme for MDOF system 
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In simulating the time history of control forces, and the time histories of ground accelerations from their 
respective PSDFs, the time lag between the two is assumed to be zero. For each set of simulated time histories of 
control force and ground acceleration, the equation of motion of the controlled response given by Eq. 1, is solved 
and the time histories of displacement, velocity, acceleration responses are generated. Several sets of such 
responses are generated for different sets of simulated excitations and the corresponding control forces. For each 
case, the percentage reduction of top floor displacement is obtained. This percentage reduction goes to one of the 
input nodes as % r as shown in the Figure 1. With these sets of time histories, the training data for the neural-net 
is prepared in the following way.  
When time lag is incorporated between the response measurement and application of control force, the training 
data is generated by assuming that the time delay between the response measurement and the actual application 
of the control force on the structure is n∆t (n = 1,2). This means that at time t, u(t), the output from ANN, acts on 
the structure instantaneously with the values of ( )x t n t− ∆ , ( )x t n t− ∆ , ( )x t n t− ∆ and (t )− ∆x n tg  applied at 
the input nodes of the neural net. All time delays including computational time of the neural net, conversion time 
from digital to analog signal and implementation time of actual control force are incorporated in the time interval 
n∆t. Clearly, the data set for time delay of 2∆t is prepared such that the control force at the third time step from 
the generated time history of control force corresponds to the values of controlled displacement, velocity, 
acceleration of the structure and ground acceleration at the first time step. Note that while finding out the 
controlled responses, control force at the first two time stations are set to zero and the control force at the third 
time station is the same as that for the simulated time history of the control force. 
 
2.1 Training of Neural Net 
 
With the input and output nodes as described above, the ANN is trained with the generated data set, using a 
single hidden layer. A fully connected feedforward neural net architecture with five input nodes and one output 
node with three hidden nodes in a single hidden layer is used for training. “Act_TanH’ activation function, 
‘BackpropMomentum’ learning function and ‘Topologic_order’ update function along with 
“Randomize_weights’ initialising function are used for the training. SNNS package is utilized for training the 
neural net. A fully connected feedforward neural net architecture with eleven input nodes (nine nodes from 
feedback responses from three point, one node for ground acceleration and the other node for the target 
reduction) and one output node with six hidden nodes in a single hidden layer is used for training.   
 
2.2 Testing of Neural Net 
 
The neural nets are tested for (i) one of the data sets for which it was trained, and  (ii) for ElCentro earthquake 
(unknown problem). For testing the neural net the computed response of the system, for the input ground motion 
and the control force applied to the system, are taken as the measured responses which are fed to the neural net 
with the time delay as described before. For the testing of the neural net with the known data set, the trained 
ANN is fed with delayed response i.e. x(t -n∆t) etc. and delayed excitation along with the percentage reduction 
of top floor displacement taken from the data sets used for training the ANN. The time history of control force 
obtained from the output node of the ANN is compared with that of the training dataset. Further, the time history 
of control force as obtained from the ANN is used to determine the percentage control of top story displacement 
by solving Eq. 1. This percentage reduction is compared with the target percentage reduction used in the input 
node of ANN.  
For the unknown problem, the time history of control force used for the computation of response is obtained by 
normalizing the time history record of the El Centro ground acceleration with respect to its peak value and then 
multiplying it by the assumed peak value of the control force so that excitation and control force have the same 
frequency contents. Note that the control forces are set to zero for the first two time steps if time delay of 2∆t is 
considered. The percentage reduction in peak controlled displacement obtained with the applied control force by 
solving Eq. 1 is taken as the target reduction. With inputs as the delayed measured responses (computed 
controlled responses), target reduction and the delayed ground acceleration, the time history of control force as 
obtained from the output node of the ANN is compared with the applied time history of the control force used to 
obtain the target percentage reduction. 
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The difference between the time histories of the two control forces is taken as one measure of the efficiency of 
the control scheme. The other measure of the efficiency of the control scheme includes differences between the 
target percentage reduction and the percentage reduction for the peak controlled displacement obtained using the 
time history of control force obtained from ANN. Also, the two sets of time histories of controlled responses, 
one obtained by using control force from ANN and the other used as input to ANN, are compared for studying 
the efficiency of the control scheme. Note that for no time delay, the instantaneous control is assumed i.e. there 
is a perfect time matching for input and output node parameters. 
 
For training and testing, the target percentage reduction of displacement is considered only for the top floor 
displacement. The efficiency of the control scheme is studied by considering also peak percentage reduction of the 
controlled responses of all the floors. 
 
3. Numerical Study 
 
The time histories of ground accelerations (excitations) are generated from the power spectral density functions 
(PSDFs) as mentioned above. In all, 7 sets of time histories of excitation sampled at an interval of 0.01s with 
2001 number of sampled points in each set are used for training the neural net. The set of time histories of 
excitation is generated such that it covers a wide range of PGA, i.e. from 0.05g to 0.35 g and covers frequency 
contents whose PSDF corresponds to neither narrow nor wide band condition ( π=ω 5g , π=ω 5.0s , 6.0=ζ g , 

6.0=ζ s ). The time histories of the control force are generated from the PSDF of similar shape having peak 
control force ranging from 0.5% to 10% weight of the 10-storey frame. With these data, 35 sets of time histories 
of controlled responses are generated by solving the equation 1 and are used for training the neural net. Table 1 
shows the different combinations of PGA of excitation and peak control force used for generating the data sets. 
The control scheme using the trained neural-net is tested for one set of known data (i.e. the data used for 
training) and one unknown set of data obtained for ElCentro earthquake. The training and testing of the ANN are 
done for the time delay of n∆t with n = 0, 1, 2. n= 0 specifies no time delay i.e. instantaneous control (termed as 
ideal control). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.1 Testing of 10-Storey Frame  
 
For testing the ANN, the ANN controlled responses of the different storeys are compared with the target ones. 
Fig. 2 compares between the time histories of control force as obtained from the ANN and that which is used to 
obtain the target responses from analysis. It is seen from the figure that the two time histories of control force are 
practically the same for the case of known problem (dataset) for no time delay. Therefore, it is expected that the 
target responses and the ANN controlled responses will be nearly the same.  

Table 1: Combinations of PGA of excitation and peak control force used for 
obtaining training data for neural net  

PGA of  
Excitation 

Peak Control Force 

(as percentage of weight of the frame) 

0.05 g 0.5%,  1%,  1.5%,  2%,  2.5%, 3% 

0.10 g 1.5%,  2.5%,  3.5%,  4.5%,  5.5% 

0.15 g 1%,  2%,  4%,  6%,  8% 

0.20 g 3%,  5%,  7%,   9% 

0.25 g 2%,  4%,  6%,  8%,  10% 

0.30 g 2%,  4%,  6%,  8%,  10% 

0.35 g 2%,  4%,  6%,  8%,  10% 
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Fig. 2:Time histories of  ideal and ANN control force (peak 

control force = 0.02 W; time delay = 0; known 
excitation) 

Fig. 3:Time histories of 10th floor uncontrolled, target and ANN 
controlled displacements (peak  control force = 0.02 W; 
time delay = 0; known excitation) 
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Figure 4: Time histories of 10th floor uncontrolled, target 

and ANN controlled velocity (peak control force = 
0.02 W; time delay = 0; known excitation) 

Figure 5: Time histories of 10th floor uncontrolled, target and 
ANN controlled acceleration (peak  control force = 
0.02 W; time delay = 0; known excitation) 

 
Figs. 3 - 5 compare between the uncontrolled, target and ANN controlled time histories of response for the 10th 
storey. It is seen from the figures that difference between the target and the ANN controlled responses is 
insignificant. The difference between the ANN controlled peak displacement and the target peak displacement is 
about 12%. Table 2 compares between the percentage reductions in peak target responses and those for the ANN 
controlled responses. It is seen from the table that the percentage reductions in peak responses for the two do not 
significantly differ; ANN provides less reduction in responses. 

Fig. 6 compares between the time histories of control force obtained from the ANN and that is used for obtaining 
the target responses for El Centro excitation. The two time histories match quite well. Therefore, it is expected 
that the difference between the target and ANN controlled responses will be small. 
 
Figs. 7 -9 compare between the uncontrolled, target and ANN controlled responses of the top floor. It is seen 
from the figures that difference between the target and the ANN controlled responses is not very significant. The 
difference between the ANN controlled peak displacement and the target peak displacement is about 11%. Table 
3 compares between the percentage reductions in peak target responses and those for the ANN controlled 
responses. It is seen from the table that the percentage reductions in peak responses for the two do not 

6 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

significantly differ; ANN provides less reduction in responses. In fact, comparison of controlled responses of all 
floors shows that the maximum percentage reductions in peak response for different response quantities of 
interest occur at different floors. However, it is generally observed that percentage reductions in peak responses 
for all response quantities of interest become less towards the bottom floors. For the present example, it is seen 
that the percentage reductions in peak responses are high (nearly maximum) between 7th to 9th floor. Further, it is 
important to note that the peak control force required to obtain a significant percentage reduction in response in 
not very large. For a peak control force of 4% of building weight the reduction in peak displacement, velocity 
and acceleration of the top floor are 48.8%, 33.4% and 38.6% respectively.  

Table 2: Comparison of target percentage reduction in responses and that obtained from ANN for 10-storey 
frame (peak control force = 0.02 W; known data set; time delay = 0) 
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Figure 6: Time histories of  ideal and ANN control force (peak 

control force = 0.04 W; El Centro; no time delay ) 
Figure 7: Time histories of 10th floor uncontrolled, target and 

ANN controlled displacement (peak control force = 
0.04 W; El Centro; no time delay) 

 
 
 

+Floor 
Displacement Velocity Acceleration 

Target ANN Target ANN Target ANN 

10 63.3 59.5 36.2 31.1 40.5 35.4 

9 64.1 61.2 42.1 37.2 43.2 39.6 

8 65.9 60.8 50.8 44.8 48.5 45.6 

7 63.9 57.8 60.6 55.7 51.0 46.0 

6 58.2 53.5 49.6 45.3 42.1 38.3 

5 52.6 48.2 37.2 33.6 31..0 27.0 

4 47.8 43.5 25.3 22.0 20.3 17.2 

3 43.1 41.2 14.8 11.3 10.6 6.7 

2 39.2 36.7 6.8 4.9 5.9 3.3 

1 36.1 33.0 –0.14 –2.4 0.04 –2.3 
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Figure 8: Time histories of 10th floor uncontrolled, target 

and ANN controlled velocity (peak control force 
= 0.04 W; El Centro; no time delay) 

Figure 9: Time histories of 10th floor uncontrolled, target and 
ANN controlled acceleration    (peak control force 
= 0.04 W; El Centro; no time delay) 

 
Table 3: Comparison of target percentage reduction in responses and that obtained from ANN for 10-storey 
frame (peak control force = 0.04 W; El Centro earthquake; time delay = 0) 

 
Fig. 10 compares between the time histories of control force as obtained from ANN with a time delay of 0.02 s 
(2∆t) and the ideal one (without time delay). It is seen from the figure that the two time histories differ and the 
difference is more prominent near the peaks. The difference between the peak values of the control forces is 
about 17%.  Figs. 11 - 13 compare between the target and ANN controlled responses of 10th story. Note that the 
target responses are obtained with the time history of ideal control force (i.e. without time delay). This 
comparison is shown to illustrate the effect of time delay on the control algorithm. A time delay of ∆t  = 0.02 s is 
selected for comparison since it is expected that between the measurement of responses and the application of 
control force the time delay will not exceed 0.02s.It is seen from the figures that the two time histories of 10th 

floor responses for different response quantities of interest differ by different degrees. However, the difference 
between the two is not very large.  
 
Tables 4 and 5 compare between the percentage reductions for peak target responses and those for the ANN 
controlled responses for time delays of 0.01 s (∆t) and 0.02 s (2∆t) for El Centro earthquake. Along with the 

Floor 
Displacement Velocity Acceleration 

Target ANN Target ANN Target ANN 

10 53.2 48.8 38.7 33.4 45.0 38.6 

9 55.6 50.7 44.4 39.9 46.9 42.3 

8 58.3 54.1 51.0 46.8 49.2 44.6 

7 56.7 50.5 58.5 53.2 52.0 46.4 

6 55.0 49.9 55.6 51.6 48.5 44.3 

5 53.5 48.3 41.1 37.0 43.8 38.2 

4 52.4 47.8 29.6 26.2 35.9 31.3 

3 49.3 45.1 18.3 15.2 24.8 21.3 

2 44.2 41.2 9.6 6.5 14.5 13.6 

1 41.0 36.2 –1.1 –3.2 3.6 1.1 
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percentage reductions shown in the tables, the ideal percentage peak reduction in responses i.e. the target 
percentages of reduction for no time delay are shown for reference. 
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Figure 10: Time histories of ideal and ANN control force 

(time delay = 0.02 s, peak CF= 0.04 W; El 
Centro) 

Figure 11: Time histories of 10th floor target and ANN 
controlled displacement  (time delay = 0.02 s, peak 
CF= 0.04 W; El Centro) 

 
Table 4: Comparison of target percentage reduction in responses and that obtained from ANN for 10-storey frame (peak 
control force = 0.04W; ElCentro earthquake; time delay = 0.01 s) 

 
 
It is seen from the tables that the time delay deteriorates the efficiency of the control scheme. The maximum 
effect of the time delay is observed for the velocity response; there is about 15% less reduction in peak velocity 
of 7th floor due to the effect of time delay. Further, it is observed from the table that the percentage reductions in 
responses are not uniform for all the floors as compared to ideal one. For some of the response quantities, it is 
observed that the percentage reduction in peak response is maximum for the 7th floor. In fact, comparison of 
controlled responses of all floors shows that the maximum percentage reductions in peak response for different 
response quantities occur at different floors. However, it is generally observed that percentage reductions in peak 

Floor Percentage Reduction in Responses 

 
Displacement Velocity Acceleration 

Ideal Target ANN Ideal Target ANN Ideal Target ANN 

10 53.2 48.5 44.5 38.7 38 33 45.0 43 41.5 

9 55.6 50 45.6 44.4 43.6 39.6 46.9 45 44 

8 58.3 53.5 48.5 51.0 50 46 49.2 49 47 

7 56.7 49 45 58.5 55.7 51.5 52.0 49 46.2 

6 55.0 49 45 55.6 54.5 50 48.5 47 43.5 

5 53.5 50 46 41.1 42.6 38 43.8 42 38 

4 52.4 49 44 29.6 30.2 25.6 35.9 35 33.8 

3 49.3 44.5 40.5 18.3 21.6 17 24.8 34 22 

2 44.2 42 38 9.6 10.5 6 14.5 13 11 

1 41.0 37 33 –1.1 -1 -1.5 3.6 1.2 -1.8 
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responses for all response quantities become less towards the bottom floors. For the present example, it is seen 
that the percentage reductions in peak responses are very high (nearly maximum) between 7th to 9th floor, like the 
case of no time delay. No significant difference is observed for percentage reduction in responses (ANN) 
between time delay of 0.02 s and 0.01 s. 
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Figure 12: Time histories of 10th floor target and ANN 

controlled velocity  (Time delay = 0.02 s, peak 
CF= 0.04 W; ElCentro) 

Figure 13: Time histories of 10th floor target and ANN 
controlled acceleration  (Time delay = 0.02 s, 
peak CF= 0.04 W; ElCentro) 

 
Table 5: Comparison of target percentage reduction in responses and that obtained from ANN for 10-storey frame (peak 
control force = 0.04W; ElCentro earthquake; time delay = 0.02 s) 

 
3.2 Implementation 

The ANN controller is fed with the measured responses taken from the frame for which the controller was 
trained. Depending upon the time delay used for training, delayed responses are provided to the controller to 
produce the command signal for control force at any instant of time t. The trained controller acts online during 
earthquake excitation.  

Floor Percentage Reduction in Responses 

 
Displacement Velocity Acceleration 

Ideal Target ANN Ideal Target ANN Ideal Target ANN 

10 53.2 48 43 38.7 31 25.8 45.0 39.5 34.6 

9 55.6 49 44.2 44.4 37.6 32.6 46.9 41 36.2 

8 58.3 51 46.5 51.0 43.4 38.6 49.2 44 38.4 

7 56.7 47.6 42.8 58.5 48.2 43.7 52.0 43.5 38.2 

6 55.0 47.2 42.5 55.6 48 42.9 48.5 41.3 36.6 

5 53.5 47 42.3 41.1 35 30.3 43.8 35.8 31.5 

4 52.4 46 40.9 29.6 23.6 18.9 35.9 31.2 26.6 

3 49.3 43 38.3 18.3 14 8.2 24.8 21.2 15.5 

2 44.2 38 35.3 9.6 4 0.5 14.5 12 6.3 

1 41.0 35 30.5 –1.1 -2.5 -7.9 3.6 -2.2 -5.9 
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4. Conclusions 
 

An active control scheme using ANN is presented for the seismic control of building frame for future 
earthquakes. The control scheme has the advantage that it can consider (i) limited number of feedback 
measurements, (ii) time delay effect, (iii) site condition and (iii) a target reduction in response. The ANN control 
scheme requires feedback responses (displacement, velocity and acceleration), ground excitation and a target 
percentage reduction as inputs to the ANN. The output of the ANN is the time history of control force. A 10-
storey building frame is taken as the illustrative example. Feedback responses are taken from 1st, 5th and 10th 
storeys of the building frame. The control is affected by a single control force applied at the top of the building 
frame with AMD. Following conclusions are drawn from the numerical study. 

1. The ANN control scheme is found to be quite effective in controlling the response of a ten-storey building 
frame taken as an illustrative example. The difference between the peak control force predicted by the 
ANN and the ideal control force for the ElCentro earthquake is of the order of 10%; the maximum 
difference between the target response and the ANN controlled response is of the order of 11% for no 
time delay. 

2. The peak control force required to obtain a significant percentage reduction in response in not very large. 
For a peak control force of 4% of building weight the reduction in peak displacement, velocity and 
acceleration of the top floor are 48.8%, 33.4% and 38.6% respectively for no time delay. 

3. With time delay, the efficiency of the ANN control is reduced compared to ideal response reduction (i.e. 
with no time delay); however, compared to target response reduction, the efficiency does not 
significantly deteriorate for all response quantities of interest. 

4. There is no appreciable change in the percentage reduction of responses when the time delay of 0.01 s is 
increased to 0.02 s. 

Appendix - I 
For the known shape of PSDF of ground excitation 
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here 2
sgσ is the variance which is equal to the area under the PSDF curve of ground excitation. For an assumed 

value of peak ground acceleration (PGA) 

p
PGA

sg =σ                            (I.2) 

where p is the peak factor given in terms of the first three spectral moments ( 210 ,, λλλ ) and the duration τ of 
earthquake (Kiureghian, 1981). 

)ln2
5772.0)(ln2p

e
e

τυ
τυ +=             (I.3) 

where eυ  is an equivalent rate of statically independent zero crossings expressed as 

υ−δ=υ )38.063.1( 45.0
e   for 69.0<δ  

      υ=     for 69.0≥δ                        (I.4) 

in which υ is the mean zero crossing rate of the process given by 

  02 /)/1( λλπ=υ                         (I.5) 
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and δ is the shape-factor for the excitation PSDF (with a value between 0 and 1) given by 

20

2
11
λλ

λ
−=δ                     (I.6) 

in which 210 and, λλλ  are respectively the zeroth, first and second moments of the PSDF about the frequency 
origin. 
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