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Abstract 
After the 2011 Great East Japan Earthquake, industrial companies that store a certain amount of stocks, i.e., their finished 
products and unfinished products, are increasing in Japan. It is because they want to continue their business and to fulfill 
responsibility to supply the products to the market. Therefore, an effect of having the stock, whether rational of having how 
much stock amounts, method and criteria for judging them are needed. The authors proposed a method that can take the 
consumption of the stock into account recovery curve of production functions. However, there is practically problem; the 
earthquake damage of manufacturing apparatuses is assuming an independent. Based on above-mentioned circumstances, in 
this paper, we newly proposed a practical evaluation method which can estimate rations amount of stocks. And its features 
are; as basic probability theory, assumed the stock amounts to be finite, and adopted impacts of the damage correlation 
between manufacturing apparatuses. Using the proposed method, recovery curves for an example of virtual manufacturing 
line including the stocks are estimated, and obtained results such as following. Recovery curve is significantly changed by 
the stock consumption of the unit time and duration of the stock consumption. In addition, these factors which vary the 
recovery curves are strongly affected by the damage correlation. 

 

Keywords: Recovery curve, Stock, Damage correlation, System reliability, Earthquake 

1. Introduction 
The 2011 Great East Japan Earthquake put many manufacturers' production facilities out of operation, leaving 
them unable to supply their products to the market for a long period of time. In view of the lessons learned from 
this experience, many manufacturers are thinking of storing a certain amount of raw materials, unfinished 
products and finished products to prepare for emergencies. Since, however, having a stock is economically 
disadvantageous mainly because of increases in equipment investment, current assets and various associated 
expenditures, there is a need for a certain level of rationality in deciding on the amount of stock to be kept. This 
makes it necessary to establish methods and criteria for decision making. The purpose of this study is to apply 
post-earthquake recovery curves depicting the post-earthquake recovery process to manufacturing plants and 
develop a method for determining a rational amount of stock to be kept according to the recovery curve 
improving effect of stock. 

 Among previous studies focusing on post-earthquake recovery curves, Shinozuka et al. (2004) evaluated 
recovery curves for water supply systems taking the association with electric power into consideration, and 
Shizuma et al. (2009) evaluated recovery curves for expressways taking the damage correlation into 
consideration. Doi et al. (2013) regarded the water in regulating reservoirs as a stock of resources and evaluated 
recovery curves for water supply systems for hydroelectric power plants. In their study, however, the amount of 
water in regulating reservoirs was assumed to be infinite, and the determination of rational amounts of stock was 
thought of as a subject of further study. Matsumoto and Nakamura (2014) modeled the production process as an 
organically integrated system of manufacturing apparatuses and proposed a mathematical model for supplying 
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unfinished products and finished products from the stock located in the system. Damage, however, suffered by 
the manufacturing apparatuses constituting the system was assumed to be independent, an assumption that needs 
to be addressed for practical application. 

 Widely used methods of evaluating conditional probability taking correlations into consideration include 
the method of using multiple integral of joint-probability density functions (e.g. Curnow and Dunnett, 1962; 
Shanti, 1963) and the Monte Carlo simulation method. Lee and Kiremidjian (2007) presented a risk evaluation 
method that takes bridge the damage correlation into consideration by using a multiple integral approach, and 
Nojima (2009) compared the multiple integral method and Monte Carlo simulation with respect to network 
system reliability. 

 This study first derives an integration formula that directly incorporates physical quantities associated with 
intensity of the applied ground motion and the earthquake resistance of the structure of interest from the multiple 
integral proposed by Curnow and Dunnett (1962) and proposes a recovery curve evaluation method that takes 
the damage correlation into consideration. Then, by focusing on a production line consisting of a number of 
manufacturing apparatuses as an example, the recovery curve improving effect of stock and the influence of the 
damage correlation are discussed. 

 

2. Recovery Curve Considering Stock 
2.1 Definition of recovery curve 
A recovery curve, which expresses a chronological process in which an earthquake-damaged system is restored 
completely, is defined as a curve obtained by connecting the average values of a time-dependent system 
performance random variable plotted against time. To be more specific, a recovery curve can be calculated, by 
using the probability density function fR(r|t) of system performance r conditional on time t elapsed after the 
occurrence of earthquake damage, as follows: 

 ∫ ⋅=
max

0

)|()(
r

RD drtrfrtR  (1) 

 

where RD(t) expresses the recovery curve, and rmax is the maximum performance of the system. If it is assumed 
that all work for the restoration of system elements is carried out concurrently, the restoration time t may be 
considered independently for each element. This means that if the restoration time for an element is given, the 
probability density function fR(r|t) of system performance may be calculated discretely according to that time. 
The function is evaluated by the method described by Nojima (1999) and Nakamura et al. (2011) which dealt 
with system flow capacity. Eq. (1) can also be expressed by using the expectation of the random variable Rsys|t 
conditional on the restoration time t. For the convenience of the subsequent formulation, the equation is rewritten 
as follows: 

 )()( |tsysD REtR =  (2) 
 

2.2 Stock model 
It is assumed that there is a certain amount of stock kept at an arbitrary location in a system as shown in Fig. 1. 
Hereafter in this study, that system is referred to as the stock model. In Fig. 1, a square represents a system 
element (e.g. manufacturing apparatuses), and a circle represents stock. Attention is turned to stock 
consumption. It is assumed that unfinished products or finished products are supplied from the stock if the 
performance of the upstream system falls below the performance of the downstream system. The random 
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variable for stock consumption, Rcon|t, can be calculated as the difference between the performance of the 
downstream system and that of the upstream system: 

R S

R

R

R

R

R

R

Rupper|t Rlower|t
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Fig. 1 – Example sketch of stock model 
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where Rlower|t is a random variable for the performance of the downstream system conditional on the restoration 
time t, and, similarly, Rupper|t is a random variable for the performance of the upstream system. When the variable 
Rcon|t is positive, supply comes from the stock. When it is negative, the amount of supply from the upstream 
system is greater than the capacity of the downstream system, and the amount of supply from the stock is zero. 
This condition needs to be imposed. Let zm represent the maximum quantity that can be supplied from the stock 
per day. Since this is the upper limit of the quantity of supply per day, it is necessary to add this condition, too. 
Hence, the probability density function fRcon(r|t) of the random variable Rcon|t for stock consumption can be 
expressed finally as 
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 The expectation of the stock left unused, za, can be obtained by subtracting total stock consumption from 
the total quantity of stock, z, as follows: 

 ∫−=
max

0
| )(

t

tcona dtREzz  (5) 

 

where tmax is the maximum recovery time of the system. Since the stock function ends when the stock has been 
used up, zero (0) is obtained if za is a negative value. 

 A recovery curve that takes stock into consideration can be obtained by adding the expectation of the 
random variable of stock consumption, Rcon|t, to the expectation of the random variable of system performance in 
the absence of stock, Rsys|t, as expressed below: 

 )()()( || tcontsysD REREtR +=  (6) 
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 Eq. (6) shows the performance improving effect of stock. The recovery curve is improved as shown in Fig. 
2. 
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Fig. 2 – Improvement of the recovery curve by stock 

 

3. Evaluation of Damage Correlation  
3.1 Multiple integral of joint distribution function 
Let us consider n correlated normal random variables Zi, i = 1, . . . , n and calculate the intersection event 
probability p(E1, E2, . . . , En) such that −∞ < Zi ≤ hi for all i. It is generally known that the probability in this 
case can be calculated by integrating the overlapping region of higher degree joint probability density functions 
f(x1, x2, . . . , xn): 

 ∫ ∫∞− ∞−
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where hi = Φ−1 {p(Ei)}, where Φ is a cumulative distribution function of the standard normal distribution. 
Assuming that Zi, i = 1, . . . , n is a normal random variable, it is expressed as a function of mutually independent 
standard normal random variables Xi, i = 1, . . ., n and Y: 

 niYXZ iiii ~1,1 2 =−⋅−= θθ  (8) 
 

where Xi and Y are independent, and θ is a parameter. By calculating Eq. (8) as a function of the random 
variables, the intersection event probability can be rewritten as a single integration formula (e.g. Curnow et al., 
1962; Gupta, 1963): 
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where φ is a probability density function of the standard normal distribution, and θi is related to the correlation 
coefficient ρij of the random variable Zi, i = 1, . . . , n as follows: 

 

 jijiij ≠= ,θθρ  (10) 
 

where 0 < θi ≤ 1. 

 

3.2 Damage correlation coefficient of structures 

Assume that there are n structures as shown in Fig. 3, and let Ci, i = 1, . . . , n represent the random variable for 
earthquake resistance and Si, i = 1, . . . , n represent the random variable for intensity of the applied ground 
motion. 
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Fig. 3 – Definition sketch of earthquake resistance and seismic intensities 

 

 It is assumed that each random variable follows a logarithmic normal distribution, and each is defined as 
follows: 
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where λ and ζ are the logarithmic mean and the logarithmic standard deviation, respectively. The state of 
structural damage is defined as follows: 

 niF
S
C

i
i

i ~1;0.1 =≤=  (12) 

 

where it is assumed that the random variables Ci, i = 1, . . . , n are mutually independent and the random 
variables Si, i = 1, . . . , n are perfectly correlated. By calculating the covariance between Fi and Fj, of the 
damage correlation coefficient between structures is calculated: 

 ji
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where ζFi , which is called a composite deviation, is related as follows: 

 222
FiSiCi ζζζ =+  (14) 

 

 Assuming ζFi = ζF, i = 1, . . ., n, Eq. (13) is rewritten as follows: 
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 From Eq. (10) and Eq. (15), the following relation is obtained: 
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 From Eq. (12), the following is derived: 

 niSiCiFi ~1, =−= λλλ  (17) 
 

3.3 Evaluation of intersection event probability considering damage correlation 

In this section, the random variable Fi, i = 1, . . . , n is assumed to follow a multi-dimensional joint probability 
distribution (logarithmic normal distribution), and its application to Eq. (9) is considered. Since the range of 
integration is 0 < Fi ≤ 1.0, noting ln(1.0) = 0.0, we obtain 

 nih
F

Fi
i ~1, =

−
=

ζ
λ  (18) 

 

 Applying Eq. (17) gives 
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 Applying Eq. (16) and Eq. (19) to Eq. (9) gives 
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 Thus, a formula for intersection event probability calculation taking account of correlation has been 
derived. The various combination event probabilities can also be evaluated in a similar way. Since the standard 
normal cumulative probability function of Eq. (20) directly incorporates physical quantities such as earthquake 
resistance and intensity of the applied ground motion, the equation is easy to understand and convenient to use. 
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 Assume that the same damage correlation coefficient is applicable to n structures. This is represented by 
ρF, and ρF and the composite deviation ζF are taken as given conditions. Then, Eq. (15) can be rewritten as 

 22
FFS ζρζ =  (21) 

 

 Hence, ζS can be calculated, and, by using Eq. (15), ζC can also be calculated: 

 222
SFC ζζζ −=  (22) 

 

 By applying ζS, ζC, λS and λC to Eq. (20), the various combination event probabilities under the condition 
of the damage correlation ρF can be calculated. 

 

4. Modeling of Example Case of Calculation 
As an example, this section looks at a production process involving a number of manufacturing apparatuses. Fig. 
4 shows a system model of the production process. Each square represents a manufacturing apparatus, and the 
production system consists of three processes (stages): A&B , C and D. The production equipment for each 
process consists of a number of apparatuses having the same functions placed in parallel. Table 1 shows the 
specifications of the manufacturing apparatuses. For example, the C process has four apparatuses (RC) each 
capable of processing 150 products per day so that up to 600 (150 × 4) products per day can be processed. 
Similarly, the A&B process is capable of processing up to 600 products per day, and the D process up to 500 
products per day. By referring to Nakamura et al. (2011), the state of earthquake-induced damage to the 
manufacturing apparatuses was classified either as minor or major, and the mean values of the corresponding 
earthquake resistance values were translated to acceleration values. These correspond to the mean values λCi of 
earthquake resistance in Eq. (20). The restoration periods for apparatuses that have suffered minor and major 
damage were assumed to be 3 days and 30 days, respectively. For the purpose of discretization, therefore, t = 3 
days and t = 30 days were assumed, and the maximum restoration period of the system was assumed to be tmax = 
30 days on the assumption that restoration work is carried out concurrently. 

 The mean value of the intensity (acceleration) of the applied ground motion was assumed to be 400 Gal 
for all apparatuses. The composite deviation ζF that takes account of the variability of seismic intensity and 
earthquake resistance was assumed to be 0.5. 
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Fig. 4 – System model consisting manufacturing apparatuses 
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Table 1 – Specifications of the manufacturing apparatus (Nakamura et al. 2011) 

Compornent
Performance

(per daｙ）
Damage mode

Earthquake resistance
(median of strength)

（Gal）

Restration time
（day）

Minor 700 3
Serious 800 30
Minor 440 3

Serious 600 30
Minor 400 3

Serious 500 30
Minor 420 3

Serious 550 30

RA 200

RB 200

RC 150

RD 100
 

 

 According to Nojima (1999) and Nakamura et al. (2011), which dealt with maximum flow problems, the 
random variable for the performance of the system model, Rsys|t, can be calculated as in Eq. (23): 
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where RA|t to RD|t are the random variables for the performance of each apparatuses dependent on restoration 
time t. 

 Fig. 5 shows the system model of Fig. 4 that takes stock into consideration. A circle represents stock; SB 
and SC represent unfinished products, and SD represents products. 

 The random variable for stock consumption, Rcon|t, conditional on the restoration time t can be expressed 
as in Eq. (24) if stock is available at SB and as in Eq. (25) if stock is available at SC. If stock is available at SD, 
the random variable on the upstream side becomes the same as in Eq. (23). Note that the condition of Eq. (4) is 
imposed in each case. The recovery curve that takes stock into consideration can be calculated, as shown in Eq. 
(6), by adding the expectation of Rcon|t to the expectation of Rsys|t. 
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Fig. 5 – System model consisting manufacturing apparatuses with stock 
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5. Calculation Results and Discussion 
To calculate the four cases shown in Table 2. The total quantity of each stock is z = 1000, and the maximum 
quantity of supply per day is zm = 500. It is assumed that stock consumption does not occur concurrently; 
instead, it occurs individually. The damage correlation coefficient ρF is varied between 0.0 (independent), 0.5, 
0.8 and 1.0 (perfectly correlated), and their recovery curves are determined. As shown in Table 2, Case 0 is a no-
stock case, and Case 1, Case 2 and Case 3 are the cases in which stock is available at SB, SC and SD, 
respectively. 

 

Table 2 – Calculation cases 

Case No.
Location

of
stock

Kind of
stock

Amount of Stock (z )
Amount of maximum

stock supply (zm )
(per day)

0 － － － －

1 SB

2 SC

3 SD
Finished
product

500

Unfinished
product

1000

 
 

 Fig. 6 shows the calculation results (recovery curves) in each case. Fig. 6 (a), (b), (c) and (d) show the no-
stock (Case 0), stock SB (Case 1), stock SC (Case 2) and stock SD (Case 3) cases, respectively. The legend box in 
each graph shows the damage correlation coefficient, ρF, and the amount of stock left unused, za, where za = 0 
means that the stock has been used up and za = 1000 means that the stock remains unused. 

 In Case 0 of Fig. 6 (a), the recovery curves show some differences in daily production performance 
because of the differences in the damage correlation. As can be seen from the recovery curves, as the degree of 
correlation decreases (as the degree of independence increases), the degree of decrease in production 
performance increases. This is due mainly to the minimum performance calculation for the serial connection 
sections of the manufacturing system. Doi et al. (2013) has reported similar findings. 

 The recovery curves in Case 1 of Fig. 6 (b) resemble the curves in Case 0 in shape. The recovery curve for 
perfect correlation is identical to the perfect correlation recovery curve in Case 0. This is partly because the 
earthquake resistance of the A&B process located upstream is higher than that of the C and D processes located 
downstream and partly because perfect correlation has made the occurrence of damage on the upstream side 
alone an empty event. As a result, stock consumption did not occur and the result became practically the same as 
in no-stock case (Case 0). 

 As can be seen from the recovery curves in Case 2 of Fig. 6 (c), as the degree of the damage correlation 
decreases, the stock is used up faster. In the perfect correlation case, a small percentage of the stock was still left 
unused (stock left unused za = 50.56) even after the 30-day restoration period ended. This indicates that the 
quantity in stock is too large under the perfect correlation scenario. 

 The Case 3 recovery curves of Fig. 6 (d) show that the system goes into operation immediately after the 
occurrence of the earthquake and remains operating at maximum performance of the system 500/day, regardless 
of the degree of the damage correlation. The stock, however, is used up in less than five days (see the 
information in the stock left unused, za, in the legend box), and the system returns to the no-stock production 
performance (Case 0). 

 As shown in Fig. 6, if locating stock in the second half of system, It tends to be high stock consumption. 
hence, system performance improvement by effect of stock become remarkably. As the degree of the damage 
correlation increases, stock consumption tends to decrease. 
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(c) Stock SC (Case 2) (d) Stock SD (Case 3) 

Fig. 6 – Comparison of the recovery curve considering the damage correlation 

 

 In the example shown in Fig. 6, the rate of supply (zm) from the stock is assumed to be 500/day, which is 
the same as the normal production maximum performance of 500/day. Consequently, among various 
combination events of possible damage suffered by the upstream and downstream processes, if, for example, 
upstream damage is 100 and downstream damage is 300, then 200 (200 = 300 − 100) is supplied from the stock. 
In that case, the apparent state of the upstream side becomes normal. Thus, if the rate of supply from the stock 
per day is equal to or greater than the production performance of the system model, recovery curves are 
determined solely by the state of damage on the downstream side, regardless of the degree of damage on the 
upstream side. In view of this, let us again compare the recovery curves for the three days following the 
occurrence of the earthquake in Case 1 of Fig. 6 (b) and Case 2 of Fig. 6 (c). Fig. 6 (b) shows four patterns of 
performance degradation due to the damage correlation, while Fig. 6 (c) shows uniform performance degradation, 
regardless of the degree of the damage correlation. The reason for this is as follows. The Case 1 recovery curves 
in Fig. 6 (b) are determined by the first term of Eq. (24), and four patterns of performance degradation appeared 
because of the minimum calculation included in the equation. The Case 2 recovery curves in Fig. 6 (c) are 
determined by the first term of Eq. (25), but the equation involves adding up random variables, and the 
expectation thus calculated is not affected by correlation. This is why uniform performance degradation was 
shown, irrespective of the damage correlation. 

 Nakamura et al. (2011) defined the expectation of system restoration time (hereinafter referred to as 
"restoration time expectancy," or "RTE") as follows: 
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 ( ) dtrtRrRTE
t

D∫ −=
max

0
maxmax /)(  (26) 

 

where tmax is the maximum restoration time and rmax is the daily production maximum performance. What Eq. 
(26) does is equivalent to measuring the daily production maximum performance (in this example, rmax = 500) 
on the vertical axis of the recovery curve graph and calculating the area of the region above the recovery curve. 
The function RD(t) in Eq. (26) draws the recovery curve taking stock into consideration shown in Eq. (6). It is 
shown comprehensively that the smaller the RTE value, the greater the performance improvement becomes. 

 Fig. 7 compares the RTE values resulting from different degrees of the damage correlation. As shown, 
taking stock consumption into consideration reveals that RTE tends to become smaller, indicating the 
effectiveness of stock. As the degree of the damage correlation increases further, RTE tends to become shorter. 
This is because when the degree of the damage correlation is high, low-damage-probability events are included 
in high-damage-probability events. The perfect correlation curves in Case 0 and Case 1 show the same RTE 
value. This is because the stock was not used in Case 1 (stock left unused za = 1000) as shown in the legend of 
Fig. 6 (b). The non-perfect-correlation curves in Case 2 and Case 3 show the same RTE values although the 
recovery curves differ in shape. The reason for this is that in both cases the stock is mostly used up within 30 
days (maximum restoration period tmax) (see the stock left unused, za, shown in the legend boxes of Fig. 6 (c) 
and (d)). 

 The recovery curve improving effect of stock consumption depends on the total amount of stock and the 
maximum quantity of supply per day. If, therefore, the stock is left unused, it means that the total amount of 
stock is excessively large. Conversely, if the stock is used up early, it means either that the total amount of stock 
is too small or that the daily supply rate is too high. In the proposed method, these factors can be evaluated 
quantitatively. This indicates that by setting in advance the quantity of products to be supplied to the market in 
the event of earthquake damage, it is possible to determine the optimum amount of stock needed to maintain that 
quantity and the quantity to be supplied per day. 
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Fig. 7 – Comparison of the Recovery Time Expectancy 

 

6.Conclusion 
A method of evaluating post-earthquake recovery curves taking account of the damage correlation applicable to 
production processes and a method of evaluating the recovery curve improving effect of stock have been 
proposed. The proposed method was applied to a production line consisting of a number of manufacturing 
apparatuses to evaluate the influence of the damage correlation on the effectiveness of stock. The results 
obtained in this study are as follows: 
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•  The recovery curve considering stock is not a monotonous increase, because It returns to  the recovery curve 
of the no-stock case when stock is exhausted. 

•  The recovery of production performance can be improved, compared with the no-stock case, by taking stock 
consumption into consideration. Especially, if locating stock in the second half of system, It tends to be high 
stock consumption. hence, system performance improvement by effect of stock become remarkably. 

•  If stock consumption is not taken into consideration, production performance improves as the degree of the 
damage correlation increases. Consequently, RTE becomes shorter. 

•  If stock consumption is taken into consideration, stock consumption decreases as the degree of the damage 
correlation increases. As a result, stock availability time becomes longer. 

•  If stock is used up before the end of the maximum restoration period (in the example shown, 30 days), RTE is 
the same. 

•  It is necessary to take the damage correlation into consideration because stock consumption is strongly 
affected by the damage correlation between apparatuses. 

 The results obtained in this study do not necessarily show a general tendency because they are dependent 
upon the system model used, the total amount of stock and the maximum quantity of supply per day. 
Nevertheless, it has been shown that if the quantity of products to be supplied to the market in the event of 
earthquake damage is set in advance, the proposed method makes it possible to determine the optimum amount 
of stock needed to maintain that quantity and the daily supply capacity. The development of a method of stock 
quantity optimization is a subject for further study. 
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