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Abstract 
State-of-the-art methods for the assessment of building fragility consider the structural capacity and seismic demand 
variability in the estimation of the probability of exceeding different damage states. However, questions remain regarding 
the appropriate treatment of such sources of uncertainty from a statistical significance perspective. In this study, material, 
geometrical and mechanical properties of a number of building classes are simulated by means of a Monte Carlo sampling 
process in which the statistical distribution of the aforementioned parameters is taken into consideration. Record selection is 
performed in accordance with hazard-consistent distributions of a comprehensive set of intensity measures, and issues 
related with sufficiency, efficiency, predictability and scaling robustness are addressed. Based on the appraised minimum 
number of ground motion records required to achieve statistically meaningful estimates of response variability conditioned 
on different levels of seismic intensity, the concept of conditional fragility functions is presented. These functions translate 
the probability of exceeding a set of damage states as a function of a secondary sufficient intensity measure, when records 
are selected and scaled for a particular level of primary seismic intensity parameter. It is demonstrated that this process 
allows a hazard-consistent and statistically meaningful representation of uncertainty and correlation in the estimation of 
intensity-dependent damage exceedance probabilities. 
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1. Introduction 
The various sources of aleatory variability (and the correlation of their residuals) associated with ground-motion 
and structural response predictions cannot be neglected in loss assessment procedures, as demonstrated by 
several authors (e.g. [1]). Hence, the purpose of this study is to investigate the appropriate treatment of material, 
geometrical and record-to-record variability in the derivation of fragility models for the earthquake loss 
estimation of building portfolios. In this context, a number of key ground-motion characteristics such as 
frequency content and spectral shape; peak ground motion; and duration have been demonstrated to significantly 
influence predictions of the response of nonlinear systems, which typically renders record-to-record variability 
the main source of aleatory (i.e. random) variability [2].  
Intensity measures (IMs) shall ideally embody features of: efficiency [2], sufficiency [3], predictability [4], and 
scaling robustness [5]. However, it is acknowledged in many applications that none of the commonly used 
intensity measures (IMs) are sufficient with respect to the distribution of ground motion characteristics – namely, 
magnitude (M), distance (R), and epsilon (ε) – expected at a given site, as determined by probabilistic seismic 
hazard analysis (PSHA) [6]. Thus, it is clear that the response from nonlinear analysis will be dependent on the 
suite of selected records, as demonstrated by Haselton et al. [7], who assessed the influence of epsilon in the 
collapse fragility of a large number of structures.  
 As evidenced by Haselton et al. [8], a robust mechanism to determine structural response variability for a 
particular level of seismic action shall be based on a record-selection procedure that incorporates the prediction 
of both mean and variance of the considered intensity defining parameters. To this end, the Generalized 
Conditional Intensity Measure (GCIM) approach [9] is employed in the selection of natural ground-motion 
records that are primarily scaled to match increasing levels of spectral ordinates at the mean fundamental period 
of vibration of the classes of interest - Sa(T1). According to the latter, conditional distributions of a relevant set 
of IMs are determined by taking into account all the rupture scenarios that influence the seismic hazard at the site 
of interest – Lisbon, Portugal – by means of the relative contribution of magnitude, distance and ground motion 
prediction models obtained from disaggregation [10], as formulated in Lin et al. [11]. 
In this study, thousands of nonlinear dynamic analyses were performed within a probabilistic methodology, 
developed by Silva et al. [12], wherein hundreds of reinforced concrete frame models (with distributed 
plasticity) are simulated in a 2D environment. Through Monte Carlo simulation, the variability in the 
geometrical and material properties of typical two, five and eight-story pre-code reinforced concrete buildings in 
mainland Portugal is taken into account. As a result, the minimum number of ground-motion records necessary 
to achieve robust predictions of response variability is appraised, in order to achieve hazard-consistent and 
statistically meaningful distributions of structural response, conditioned on different levels of seismic intensity - 
Sa(T1). In this framework, matters of efficiency, sufficiency and predictability are taken into account. Nonlinear 
response analysis of 100 structural models is performed for each selected ground-motion record; and damage 
exceedance probabilities are determined for each record, at each level of Sa(T1). The importance of computing 
“record-specific” probabilities is highlighted in the context of the loss estimation of building portfolios, which is 
strongly influenced by the spatial correlation of ground motion intensity parameters. To this end, it is 
demonstrated that the verified variability of “record-specific” probabilities is conditional on each level of Sa(T1), 
and dependent on intensity measures other than Sa(T1). Thus, these probabilities can be expressed as a function 
of a conditional intensity measure ( ), which establishes the proposed concept of conditional fragility 
function. 

2. Numerical models 
Drawing upon the study by Silva et al. [12], in which material and geometrical properties of the most 
representative Portuguese building classes were characterized, the numerical models considered herein represent 
typical buildings constructed before 1958, the year when the first seismic design provisions were enforced, and 
are thus defined as pre-code.  
Dynamic properties are characterized by the mean fundamental periods of vibration of the random generation of 
assets with varying geometrical and material statistical distributions. These have been found to be 0.26, 0.45 and 
0.70 seconds, for the two, five and eight story buildings, respectively. The percentage of reinforcement in the 
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beams and columns is calculated following the pre-code regulations and practices corresponding to the ultimate 
and serviceability limit states, for each asset, in accordance with the sampled geometrical and material 
characteristics.  
When using a Monte Carlo approach to randomly generate portfolios of buildings, it is important to ensure that 
convergence in the results is achieved. Accordingly, as demonstrated in a study by Silva et al. [13] in which a 
similar sampling framework was implemented, the use of one hundred assets is necessary to guarantee the 
statistical significance of the generated distribution of structural capacity. To maintain the computational effort 
at a reasonable level, each structure is modelled as a single infilled moment frame with three bays. As 
schematically presented in Fig. 1, for the case of 5 story buildings, each frame was modelled in a 2D 
environment using the open-source software OpenSees [14], with force-based distributed plasticity beam-column 
elements. For the sake of synthesis herein, readers are referred to the aforementioned work by Silva et al. [12] 
for details of the numerical considerations adopted with regards to the cross section discretization and integration 
points of the elements, the material constitutive relationships, P-delta effects, and the infill panel modelling 
approach. 

  
Fig. 1 – Schematic view of the five-story RC frame model: front (left), side (centre) and isometric view 

(right) without infills, adapted from Silva et al. [13]. 

3. Record selection methodology 
In the analytical assessment of building fragility, the record-to-record variability should be robustly modelled 
given its significant influence on the estimated distribution of structural response. Amongst the available ground 
motion selection procedures, the Conditional Spectrum (CS), initially proposed by Baker [15] and further 
developed by Jayaram et al. [16], provides a mechanism for estimating both the target mean and variance of 
spectral ordinates that a set of selected records should match, thus adequately accounting for the record-to-record 
variability. However, a limitation of the latter approach is that only the characteristics of ground motion 
represented in terms of spectral ordinates are considered. Thus, the Generalized Conditional Intensity Measure 
(GCIM) approach proposed by Bradley [9] is adopted herein for record selection, as it allows all the intensity 
measures identified as necessary to ensure that efficiency, sufficiency, scaling robustness and predictability are 
accounted for. A brief summary of the theoretical concepts behind the GCIM is provided below, and its 
application in the present study is presented further in the following sections. 
The fundamental basis of the conditional response spectrum is that spectral accelerations at multiple vibration 
periods can be assumed to have a multivariate lognormal distribution, and the conditional distribution of spectral 
acceleration ordinates, for a single earthquake scenario, given the occurrence of a specific value of the spectral 
acceleration at some period, has a univariate lognormal distribution [16]. In the GCIM, this concept is extended 
to any ground motion parameter of interest [9]. In other words, the distribution of any IMi given an earthquake 
scenario, or rupture Rup (IMi|Rup), conditioned on the occurrence of a particular level of another intensity 
parameter (IMj), , can be assumed to have a lognormal distribution.  
Upon the definition of appropriate Ground Motion Prediction Equations (GMPE) and correlation models 
between different intensity measures (IMi), the conditional distribution of each IMi given IMj = imj is obtained 
via the total probability theorem as follows: 

              (1) 
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Where  is the probability density function (pdf) of IMi given IMj=imj; 
 is the pdf of IMi given IMj=imj and Rup=rupn; and  is the 

contribution weight of Rup=rupn, determined from seismic hazard disaggregation. From the assumption that the 
vector of all the considered IMi (herein referred as IM) is characterized by a multivariate lognormal distribution, 
it follows that for each IMi, the function  has a univariate lognormal distribution, 
which can be defined by its conditional mean and standard deviation parameters: 

          (2) 

                                   (3) 

Which are determined as a function of , the number of standard deviations, , by which 
the logarithm of IMj=imj differs from the mean prediction of a particular GMPE, , for a given 
rupture scenario, Rup=rupn: 

                                                             (4) 

Accordingly, corresponds to the correlation of residuals between different intensity parameters, 
presented in detail in section 3.3. 
 
3.1 Probabilistic seismic hazard and disaggregation 
A number of seismic hazard models exist for Portugal, but only one of these has been selected herein for the 
purposes of demonstrating the methodology to link nonlinear response analysis with PSHA. The seismological 
source model has been taken from the study by Vilanova and Fonseca [18], whilst the selection of the GMPEs 
was performed based on the findings of Vilanova et al. [19], in which regional ground motion data from 
moderate magnitude earthquakes was used to verify the performance of different GMPEs in the Iberian region. 
Subsequently, the models developed by Atkinson and Boore [20] and Akkar and Bommer [21] are considered 
herein, with 0.70 and 0.30 logic tree weights, respectively. 
Typically, causal earthquake magnitude, source-to-site distance and fault properties are considered in the 
definition of scenarios that contribute to the hazard in a given site, and are established by disaggregation of the 
PSHA [10]. However, following the developments made by Lin et al. [11] to the Conditional Spectrum 
framework, seismic hazard disaggregation should not be limited to Magnitude (M) and Distance (R), but also 
consider the influence of different GMPEs, in order to ensure the consistency between the target distributions of 
all considered intensity measures, IMi, and the variability of ground motion properties expected at the site of 
interest (Lisbon; Lat. = 38.373, Lon. = –9.143). Thus,  is estimated for each conditioning 
intensity level according to the contribution of all NRup scenarios and set of GMPEs considered, as described 
below: 

 
   (5) 

The OpenQuake-engine [22] which has been used herein for the probabilistic seismic hazard analysis based on 
rock site conditions (i.e. shear wave velocity in the top 30 m of the soil of 760 m/s) does not currently address 
3D disaggregation on M, R and GMPE ; however, due to its open-source nature, it was possible to produce the 
necessary intermediate results for the computation of , as demonstrated 
below: 

              (6) 
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Where  stands for the logic-tree weight assigned to ;  is the rate 
corresponding to the conditional probability of IMj=imj, using , assuming a Poissonian process; and 

 is the rate of occurrence of IMj=imj, computed from the corresponding rate of exceedance, as proposed 
by Bradley [9]. 
 
3.2 Record Database 
Only three seismic events with significant ground motion were ever recorded in Portugal. For this reason, in 
order to create a sufficiently large database of candidate records for selection, accelerograms from other regions 
in the world with similar geological and tectonic characteristics were gathered (e.g. Spain, France, Switzerland, 
and East United States). The properties of stable continent and active shallow crustal regions, as well as the 
corresponding faults influencing the seismic hazard were respected to the maximum extent, based on the 
information provided by Vilanova and Fonseca [18]. 
 
3.3 Selected intensity measures 

As demonstrated in a study by Sousa et al. [23], in which efficiency of an extensive set of IMs has been 
evaluated in the context of fragility estimation, there are a number of intensity measures related to duration and 
number of cycles that do not provide statistically meaningful correlation with the structural response of the 
building classes considered herein. On the other hand, the intensity measure types that incorporate velocity and 
spectral shape characteristics systematically provide increased correlations with damage exceedance 
probabilities. Theoretically, any intensity parameter can be considered in the GCIM selection approach. 
However, the latter assumption hinges on a number of constraints that, in practice, currently limit the number of 
IMi that can be considered: 

a) Predictability must be ensured, based on the availability of GMPEs for predicting marginal mean and 
standard deviation of the logarithm of each IMi; 

b) It must be possible to determine the correlation between each intensity parameter considered. 
The applicability of the selected GMPEs to the specific case of mainland Portugal renders spectral acceleration 
at a range of periods an obvious initial choice for the target IMi. Thus, in order to ensure that target distributions 
computed for IMi other than spectral ordinates are consistent with the ground motion properties to be expected at 
the site of interest, preference is given to IMi for which marginal median and logarithmic standard deviation can 
directly be determined or indirectly be inferred from the same GMPEs. Therefore, the vector of intensity 
measures considered (i.e. IM) includes intensity parameters (i.e. IMi) of peak ground acceleration (PGA), peak 
ground velocity (PGV), acceleration spectrum intensity (ASI), Housner intensity (HI) and spectral ordinates 
within the range of 0.05 to 3.0 seconds, conditioned on the spectral acceleration (IMj) at the mean fundamental 
period of vibration of each class (Sa(T1)). Thus, the probabilistic distribution of the selected IM vector 
conditioned on a given level of Sa(T1) is designated henceforth as ; being determined according 
to the hazard-consistent probabilistic distribution of each IMi, given Sa(T1)=a -    - as 
established in Equation 5, and the correlation models summarized in Table 1 . 

Table 1 – Correlation models considered for application of GCIM selection methodology 

 SA(Ti) PGA PGV ASI HI 
SA(Ti) Baker and 

Jayaram [25] 
Baker [26] Bradley [27] Bradley [28] Bradley [28] 

PGA - - Bradley [27] Bradley [28] Bradley [28] 
PGV - - - Bradley [27] Bradley [27] 
ASI - - - - Bradley [28] 

4. Fragility assessment  
As discussed by Silva et al. [12], the use of local criteria to define limit states when generating fragility curves 
for a population of buildings may not be appropriate. Hence, in the study herein, structural response will be 
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evaluated based on the maximum inter-story drift (ISD) and global drift (GD), considering four damage states: 
Slight Damage (SD), Moderate Damage (MD), Extensive Damage (ED) and Collapse (Col). In this context, GD 
corresponds to the maximum roof drift ratio, computed as the fraction between maximum roof displacement and 
building height. 
 
4.1 Limit state criteria 
GD limits are determined according to the evaluation of capacity of each frame through a displacement-based 
adaptive pushover [29]. Similarly to what has been considered by other authors, displacement thresholds at each 
limit state are defined for each sampled frame without masonry infills (bare frame) according to the following 
assumptions: 

• Slight damage: global drift at 50% of maximum base shear capacity; 
• Moderate damage: global drift when 75% of maximum base shear capacity is achieved; 
• Extensive damage: global drift at maximum base shear capacity; 
• Collapse: global drift when 20% decrease of the base shear capacity is verified, or 75% of the ultimate 

global drift attained, whichever is achieved first.  
The influence of infill panels, which translates to a significant decrease of displacement capacity, is accounted 
for by applying the reduction factors proposed by Bal et al. [30] for each aforementioned limit state. 
For what concerns ISD, a fixed set of values per limit state are defined based on the evaluation of global damage 
with increasing inter-story drift from 25 dynamic tests performed in real reinforced concrete moment resisting 
frames by Rossetto and Elnashai [31]. In order to adapt the six damage states proposed by the latter Authors with 
the one being considered in this study, light/slight damage and partial collapse/collapse damage states have been 
merged, as follows: 

• Slight damage: 0.08% maximum inter-story drift; 
• Moderate damage: 0.30% maximum inter-story drift; 
• Extensive damage: 1.15% maximum inter-story drift; 
• Collapse: 2.80% or higher maximum inter-story drift; 

 
4.2 Uncertainty in structural response 
In this framework, variability in structural capacity, taken into account through the sampling of NF = 100 
frames, has been addressed through a probabilistic approach towards the modelling of material, geometrical and 
mechanical properties. However, since records are selected and scaled based on target distributions of a set of 
IMi (section 3.3) that have distinct impacts on the spatial distribution of seismic demand, the number of ground 
motions required to achieve reasonable confidence in the estimated response variability is not known a priori 
[32]. It is recognized in the literature that a large number (greater than thirty) is necessary for the aforementioned 
purposes (e.g. [8]); nonetheless, an accurate estimate is highly dependent on the parameters used to characterize 
response, as well as the structural properties itself. This matter is addressed in the following section 4.2.1. 
 
4.2.1 Response variability – minimum number of records 
A total of 150 records, selected according to the GCIM methodology to match target distributions of IM – 

 - is hereby assumed as a sufficiently large sample to provide an accurate evaluation of inter-
story drift (ISD) and global drift (GD) distributions at each level of Sa(T1) in each sampled frame.  
The minimum number of records necessary to achieve identical distributions within a given statistical 
significance level can thus be determined by comparing the latter with responses resulting from record sets of 
increasing size, selected to match the same target IM. Accordingly, the following methodology is devised, for the 
purposes of determining a minimum number of records necessary for nonlinear response analysis of 100 
synthetically generated structures:  

1. Distributions of ISD and GD resulting from nonlinear dynamic analysis of each of the 100 simulated 
frames (for 2, 5 and 8 story classes), are determined, using a set of 150 records for each level of Sa(T1); 

2. A similar exercise is repeated for samples of 10 to 140 records (with steps of 10 records). These sets are 
selected to match the empirical distribution of IM derived from the reference set of 150 records; which 
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ensures statistical consistency between distributions of IM amongst record samples, as determined by 
Kolmogorov-Smirnov (KS) goodness-of-fit tests [33] within a 10 % significance level; 

3. Empirical probabilistic distributions of ISD and GD obtained in step 2 are individually compared with the 
reference computed in step 1, for conditioning levels of Sa(T1) ranging from 0.1g to 1.0g (with 0.1g 
intervals). 

It is assumed that convergence on the mean prediction is achieved prior to convergence on the variance. 
Therefore, step 3 is performed using the Brown–Forsythe (BF) test [34], according to which the hypothesis that 
two sets of data have equal variance is assessed at the 5% significance level. Fig. 2 illustrates the BF test statistic 
(p-value) when comparing variances appraised in step 2 against the reference distributions computed in step 1.  
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Fig. 2 – BF test statistic (p-value) for 100 synthetic 5 story frames; records selected and scaled to a level of  

Sa(T1)=1.0g. P-values higher than 0.05 indicate that the null hypothesis of equal variance cannot be rejected at 5 
% significance, for GD (left) and ISD (right). 

This test is preferred over other inference tools such as the F-test for equality of variances [33], which is highly 
sensitive to departures from normality. As illustrated in Fig. 2, a value of 60 records is considered to provide an 
adequate compromise between computational effort and statistical significance of results in terms of variance in 
distribution of Global Drift and Inter-story Drift. Although only the results pertaining to 5 story frames and 
Sa(T1) equal to 1.0g are presented, the same conclusion is attained for samples of two and eight story frames, at 
all considered levels of conditioning seismic intensity parameter, Sa(T1).  
 
4.2.2 Uncertainty in record-specific probabilities of exceedance 
Because 100 frames are analysed for each set of 60 ground-motion records selected for Sa(T1)=0.1g to 1.0g (i.e. 
60*100 response history analyses per level of Sa(T1)), it is possible to determine damage exceedance 
probabilities for each ground motion record. In other words, for each level of Sa(T1), 60 ‘record-specific’ 
damage exceedance probabilities are determined based on 100 EDP results. As a result, the present framework 
foresees the characterization of building fragility through probabilistic distributions of damage exceedance 
probability, denoted as . As such, 60 record-specific probabilities of exceedance of SD, MD, 
ED and Col. are estimated according to ISD and GD criteria for Sa(T1)=0.1g to 1.0g, as illustrated in Fig. 3 and 
Fig. 4.  
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Fig. 3 – Record-specific probabilities of exceedance of SD, MD, ED and Col, as a function of GD criteruia; for 

5-story buildings. 
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As presented in Fig. 4, the aforementioned probabilities are considered as realizations of random variables, 
based on which it is possible to determine the associated empirical density function, for each level of Sa(T1) and 
damage state. Accordingly, the approximation of a parametric function is evaluated through Kolmogorov-
Smirnov (KS) goodness-of-fit tests [33] tests used to assess the null hypothesis that the underlying distributions 
follow a Beta probabilistic model [35]. 
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Fig. 4 – Empirical probability density -  - of damage exceedance probability of Extensive Damage 

and corresponding fitted Beta models; damage criteria of ISD for 5-story frames. 

A visual inspection of the fit between theoretical and empirical distributions illustrated in Fig. 4 highlights the 
capability of the considered model to take into account variations of probability density in the interval ]0.0, 1.0[ 
across different levels of Sa(T1). The aforementioned null hypothesis is thus verified according to KS tests 
performed on empirical and theoretical cumulative distribution functions, and cannot be rejected at a 10% 
significance level. However, it should be highlighted that whenever the Beta model is used for the purposes of 
earthquake loss estimation, appropriate attention should be given to the fact that exceedance probability values 
of 0.0 and 1.0 cannot be sampled from the latter.  
For the sake of synthesis, only the results pertaining to 5-story frames and damage state of Extensive Damage 
evaluated in terms of GD criteria are illustrated in Fig. 4. Nonetheless, similar findings regarding the 
applicability of the selected theoretical model were attained for all structural classes and damage states.  
4.2.3 Why determine distributions of record-specific probabilities of exceedance? 
In the context of performance-based engineering, it is widely accepted that, in order to appropriately provide a 
link between seismic hazard and structural response, an “optimal” intensity measure - Sa(T1) in the present case 
- must embody features of efficiency [2], sufficiency [3], predictability [4] and scaling robustness [5]. Moreover, 
provided that sufficiency, predictability and scaling robustness requirements are met, efficiency matters are 
related with the number of analyses necessary for the estimation of a satisfactory approximation to the “true” 
value of exceedance probability within a specified standard error limit; designated herein as . 
In the present case, the minimum number of sampled frames and ground motion records required for a 
statistically significant characterization of structural response has been determined. However, distributions of 
EDP and corresponding damage exceedance probabilities are estimated for each ground motion record in each 
level of Sa(T1). One might argue that this is an unnecessary step, because   can simply be obtained 
from the distribution of 6000 EDP values (60 ground motion records x 100 frames) for each level of Sa(T1); as 
illustrated in Fig. 5, in which is plotted against the results previously presented in Fig. 3. 
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Fig. 5 – Record-specific probabilities of exceedance of SD, MD, ED and Col, as a function of GD criteria; and 

corresponding  (illustrated by the black squares), for 5-story buildings. 

However, it is argued by the authors that considering rather than  leads to a 
misrepresentation of the impact of record-to-record variability in the appraised damage exceedance probabilities 
and, consequently, in the results of seismic loss estimation. 
In order to demonstrate the aforementioned statement, a simple example is presented: the building damage of 2, 
5 and 8-story buildings is associated simply with the Collapse damage state, with a corresponding damage ratio, 
DR, (ratio between the attained loss and the total replacement value of the asset) of 1.0. Strictly speaking, for the 
purpose of this exercise, the distribution of probabilities of collapse conditioned on Sa(T1)=0.5g 
( ) is equal to the distribution of damage ratios conditional on Sa(T1)=0.5g. Thus, when 
considering a hypothetical portfolio of 100 buildings of the same structural class located at 100 different sites 
subjected to the same value of Sa(T1) (0.5g for the purposes of this exercise), the mean (μDR) and variance (σ2

DR) 
of the final distribution of aggregated DR can be computed according to Equation 7 and Equation 8, respectively: 

                                                 (7) 

                                         (8) 

Where  and  are respectively the mean and variance of 

, which is considered similar in all the k locations; and  is the spatial correlation 
coefficient between “record-specific” probabilities at two m,n locations. 
The characterization of  is further addressed in this manuscript, in section 4.2.4. Nevertheless, it is clear 
from Equation 8 that it plays a very significant role in the loss estimation of spatially distributed portfolios, as 
evidenced in Fig. 6, where the empirical distribution of aggregated loss computed through numerical simulation 
of the Beta approximation to  at each site is illustrated for two extreme cases of zero and 
full spatial correlation. 
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Fig. 6 – Empirical probabilistic distributions of aggregated loss computed for a hypothetical portfolio of 100 

spatially distributed buildings subjected to Sa(T1)=0.5g, with zero and full correlation between  
at each of the 100 sites; Limit state criteria of GD (left). Beta approximation to  (right).  
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4.2.4 Correlation between damage exceedance probability 
The previous section highlights the importance of characterizing building fragility through probabilistic 
distributions of damage exceedance probability per level of Sa(T1). However, two important questions shall be 
addressed: 

a) Is there a physical meaning underlying the assumption of spatial correlation between  

(i.e. between “record-specific” damage exceedance probabilities) at different sites? 

b) How can such correlation be adequately taken into account, in a hazard-consistent manner? 

Regarding a) and b) above, two important aspects shall be evidenced. Firstly, the damage exceedance 
probability distributions presented in this framework arise from the computation of “record-specific” 
probabilities of exceedance for each level of Sa(T1). In this context, it is verified that the scatter depicted in Fig. 
3 for each level of Sa(T1) is the result of record-to-record variability. In other words, for a given level of Sa(T1), 
the variability in “record-specific” probabilities relates to the variation of a secondary (conditional) intensity 
measure – .  

When assigning the record-specific values of each   to the corresponding record-specific 
probabilities, the more efficient IMi can be selected as the one for which the correlation with damage exceedance 
probabilities of SD, MD, ED and Col is higher. Furthermore, it is demonstrated in Fig. 7 that, for such 

, regression analysis can be performed in order to fit a cumulative lognormal function to the scatter 
of IMi-dependent damage exceedance probabilities. Given its conditional nature, such curves are hereby 
designated as Conditional Fragility Functions, providing a parametric relationship between and 
damage exceedance probabilities when records are selected and scaled for Sa(T1)=a. 
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Fig. 7 – Record-specific probabilities of exceedance of ED, as a function of GD criteria, and corresponding conditional fragility 

functions for the cases of Sa(T1)=0.5g, 0.8g and 1.0g; for 5-story buildings 

It has been established that  can be depicted as a function of a secondary intensity measure 
conditioned on Sa(T1)=a, i.e.  (Fig. 7). Thus, the second important aspect to be highlighted is the 
fact that, if the spatial correlation between  at different sites subjected to identical Sa(T1)=a can be 
determined, then  (the spatial correlation between “record-specific” probabilities) has in fact a physical 
meaning. Since, as established by the conditional fragility functions,  is a function of 

, then “record-specific” damage exceedance probabilities can be assumed as random variables 
whose uncertainty relates to the record-to-record variability expressed by . As a result, the spatial 
correlation between damage exceedance probabilities at different sites subjected to Sa(T1)=a is a function of the 
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correlation between the values of  at those same sites. In this context, the appropriate definition of 
the correlation between values of  at different sites subjected to Sa(T1)=a and the impact of its 
consideration in a loss estimation procedure is the subject of further research.  

5. Conclusions 
This papers presents a framework according to which multiple ground motion intensity measures are included in 
the characterization of building fragility through probabilistic distributions of damage exceedance probability for 
each level of Sa(T1). Variability of structural capacity and seismic demand have been considered in an analytical 
exercise where statistically significant distributions of response have been determined. Moreover, it is 
demonstrated that even in the case where the number of performed analyses are sufficient to ensure statistically 
significant distributions of structural response, non-negligible errors can be attained in estimation of damage 
exceedance probabilities if such computation is not performed in a statistically consistent manner. These errors 
have furthermore been verified to be dependent on the way the definition of response limit states is performed. 
The relevance of the presented novel approach has been demonstrated within the context of loss estimation of 
building portfolios, where the spatial correlation of ground motion residuals plays a significant role. To this end, 
the importance of the introduced conditional fragility functions is illustrated by demonstrating its capability of 
consistently take into account record-to-record variability in the evaluation of fragility; while establishing the 
means by which spatial correlation between damage exceedance probability distributions can be taken into 
account. 
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