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Abstract 
The design of a structure using modal analysis is usually based on finding the maximum responses using one of 
the two combination methods of square-root-of -sum-of-squares (SRSS) and complete quadratic combination 
(CQC). It is generally accepted that the predicted approximate responses would be conservative and accurate 
enough for practical structural design analysis. However, in this paper it is shown that for barrel vault cylindrical 
roof shells the modal combination methods may not result in conservative results. In this paper a semi-
analytical method, which has been previously verified using a finite element modelling, is used to find the time 
history response when barrel vault cylindrical shells are subject to synchronous vertical motions from typical 
earthquake records. The analytical method adopts an explicit solution based upon the Love-Timoshenko strain-
displacement relationships and employs a Lagrangian approach to the derivation of the equations of motion. 
The investigation on the accuracy of modal combination methods using the two methods of square-root-of-sum-
of-squares (SRSS) and complete quadratic combination (CQC) shows that both methods estimate the maximum 
displacement and axial membrane stresses within the practically acceptable percentage of error. However, the 
stress resultants other than the axial membrane stress cannot be accurately estimated using these modal 
combination methods and they do not always provide conservative results. It is concluded that performing a 
modal combination methods could lead to serious underestimation of responses for large roof shells subjected to 
earthquake loading. 
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1. Introduction 
The prevalence of very efficient and robust shell structures in nature has been a source of inspiration 
for many architects and engineers. The advancement of new optimization techniques and low mass-
to-stiffness ratio of shell structures, their smooth curves and visual appeal has once again attracted 
engineers to explore different options of using shell structures. Their potential if designed properly to 
resist extreme loadings such as earthquake and hurricane has been demonstrated in recent years [1], 
[2]. 

 It is, however, surprising to see so little research has been performed on the behaviour of roof 
shells under earthquake loading. In 1995, Kobe, a modern city was struck by M = 7.2 earthquake that 
caused serious and widespread damages to buildings, and infrastructure. However, shell and space 
frames of gymnasiums and school were not seriously affected and could serve as shelters for those 
who lost their homes. In an attempt to assess the maximum responses and check the efficiency of roof 
shells, Kuneida in 1997 investigated the response   of cylindrical roofs subjected to Kobe earthquake 
conditions [3]. He mentioned that there was no seismic code available for the design of space 
structures that were built in Japan. Hence, those space structures that were built did not always follow 
the seismic code for buildings. Kuneida derived the maximum responses of cylindrical roof shells and 
domes with different geometries and material properties. However, in order to reduce the computing 
time he modelled them as a continuous shell. The results of the investigation showed the stresses in 
cylindrical shells became very large especially for in-plane shear stresses when subjected to the 
horizontal component of the earthquake. Other stresses were also significant for both horizontal and 
vertical earthquakes.  Nonetheless despite the very large stresses induced in the shell modelled by 
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Kuneida the cylindrical roof shell in the area of earthquake were not seriously damaged. The stress 
responses of the domes were much less than the cylindrical shell. However, domes were subjected to 
an earthquake with the maximum acceleration much less than Kobe earthquake, so it was not possible 
to compare the level of stresses in domes with the cylindrical shells. Although Kuneida did not 
implement any modal combination rule to estimate the maximum responses but he suggested that the 
square root of the sum of squares (SRSS) estimation of the maximum response might not be valid for 
roof shell. The reason would be because of the closeness of natural frequencies in shells. 
Unfortunately as the geometry and material properties were not reported in his paper it was not 
possible to undertake comparative studies with Kuneida’s reported results. 

In 2003 Shizhao et al [4] performed a numerical study on the free vibration properties and 
dynamic response of single layer latticed cylindrical shell with pin joint supports to horizontal and 
vertical component of earthquake. They modelled latticed shell as space frame with the rigid 
connections between joints and did not use the equivalent shell section. They mentioned the seismic 
design code for latticed shell is not available in China, suggesting that it is due to the complex 
behaviour of this kind of structure. Based on their opinion, understanding the behaviour of latticed 
shell demands a huge calculation and research effort. They suggested that the complete quadratic 
combination (CQC) method cannot be used in such complicated structures and time history analysis 
(THA) method requires a lot of computing time and skilful engineers. However, they have not 
presented any result indicating that CQC method gives wrong estimation of results.  

The result of a more recent paper shows that a response spectrum analysis, based on the 
current practice, where the peak modal responses are combined without including their peak factor 
contribution, can lead to biased estimate of the peak responses when more than one well separated 
modal frequencies make significant contribution to the total response [5]. Menun [5] believes there is 
not enough literature available about the impact of ignoring the peak factor in the response spectrum 
analysis.  

Current modal combinations methods derive the total response based on combining the peak 
modal responses without including their peak factors. These peak factors are essentially the modal 
participation factors that are discussed for cylindrical roof shells having closely separated natural 
frequency in the present paper.  

The present paper addresses the reliability of modal combination rules for estimating the critical 
dynamic response conditions for roof shells. In particular, two modal combination rules, SRSS and 
CQC methods are considered. 

2. Analytical modelling  
An analytical model is developed for a thin, open cylindrical shell, of radius of curvature R, 
longitudinal length Lx = L, thickness h, and opening angle 𝜙 as shown in Fig.1(a). Material is taken to 
be linearly elastic, and the damping ratio is taken to be constant in all modes. The analytical method is 
developed based on a membrane idealization of the primary equilibrium state. It adopts an explicit 
solution using Love-Timoshenko strain-displacement relationships and employs a Lagrangian 
approach to the derivation of the equations of motion. In deriving the analytical solutions based upon 
the above mentioned equations an exact solution for the natural vibration modes for a shell having 
simple support boundaries, may be taken in the form of double trigonometric series Eq. (1) 

𝑢(𝑥,𝑦, 𝑡) = ∑ ∑ 𝑢𝑖𝑗(𝑥,𝑦)𝑞𝑖𝑗𝑗 (𝑡)𝑖 ;  𝑣(𝑥,𝑦, 𝑡) = ∑ ∑ 𝑣𝑖𝑗(𝑥,𝑦)𝑞𝑖𝑗𝑗 (𝑡)𝑖 ; 
w(𝑥,𝑦, 𝑡) = ∑ ∑ 𝑤𝑖𝑗(𝑥,𝑦)𝑞𝑖𝑗𝑗 (𝑡)𝑖                                                                       (1) 

where  

𝑢𝑖𝑗(𝑥,𝑦) = 𝑢�𝑖𝑗 cos 𝑗𝜋𝑥
𝐿   sin 𝑖𝜋𝑦

𝑅𝜙 ; 𝑣𝑖𝑗(𝑥,𝑦) = �̅�𝑖𝑗 sin 𝑗𝜋𝑥
𝐿   cos 𝑖𝜋𝑦

𝑅𝜙 ; 𝑤𝑖𝑗(𝑥,𝑦) = 𝑤�𝑖𝑗 sin 𝑗𝜋𝑥
𝐿   sin 𝑖𝜋𝑦

𝑅𝜙     (2) 

Each mode of this series satisfies the conditions of simple support boundaries, namely 

𝑣 = 𝑤 = 0, 𝑁𝑥 = 𝑀𝑥 = 0 at 𝑥 = 0, 𝐿 and 𝑢 = 𝑤 = 0, 𝑁𝑦 = 𝑀𝑦 = 0 at 𝑦 = 0,𝑅𝜙      (3) 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

 

In the modal forms of Eq. (1), (i,j) represent the number of half waves in the circumferential and 
longitudinal directions, respectively and 𝑢�𝑖𝑗, �̅�𝑖𝑗, and 𝑤�𝑖𝑗 are the normalized coefficient determined by 
solving the eigenvalue problem. 

Finally, for a set of cylindrical roof shells having different geometries, when subjected to the 
vertical motions of an earthquake will provide the basis for an assessment of the accuracy of modal 
combination rules in assessing the displacement, and stress responses.  

  
Fig. 1 – (a) Geometry of shell (b) Displacement response spectrum of Landers earthquake 

2.1 Relationship between Modal Participation Factor (MPF), earthquake response spectrum 
and maximum response 
As we know the natural frequencies and responses of a shell changed due to inclusion of typical levels 
of pre-loading or changes in the geometry. Therefore, it would be helpful to find simple relationships 
between the response spectrum of the earthquake and the observed changes in the maximum response 
of shell due to the changes in pre-loading or geometry of the shell. These relationships would help 
designers to find the maximum responses without the need to go through extensive THA. This a basis 
to 

To address this need a study is performed, which attempts to relate the displacement response 
spectrum of the Landers earthquake (Fig.1(b)) to the changes in frequency due to taking into account 
self-weight and increasing pre-loading (Fig.2(a)), making use of the MPF of each mode (Fig.2(b)). 
MPF is obtained by dividing the modal force, 𝑃𝑖𝑗 by the modal mass 𝑀𝑖𝑗 as presented in Eq. (4)  

𝑀𝑃𝐹 = 𝑃𝑖𝑗 (𝑡)
𝑀𝑖𝑗

= 4(−1+cos𝑗𝜋)(𝑤�𝑖𝜋−𝑣�𝜙)
𝑗𝜋(𝑖𝜋−𝜙)(𝑖𝜋+𝜙)

cos𝜙
2

       (4) 

This effectively shows the inertial participation of each mode. Using MPF, the modes with 
higher contributions to the response would be identified. The maximum response of each mode can 
then be found by multiplying the values of the MPF of each selected mode by the response spectrum 
of the earthquake (Fig.1(b)) at the corresponding natural frequencies of the shell in that mode 
(Fig.2(a)).  

For example, the frequency of mode (1,1) when the effect of pre-loading is neglected has the 
highest MPF equal to 1.4 (Fig.2(b)). The natural frequency of this mode is equal to 2.928 Hz 
(Fig.2(a)), for which the corresponding displacement response spectrum of earthquake, Sd, is equal to 
0.01618 m (Fig.2). Looking at the results from the THA, which represent the maximum displacement 
of the shell along center line bb (Fig.1(a)), it is noticed that the maximum response of mode (1,1) is 
equal to 0.02262 m. This value is exactly equal to the result of multiplying the value of MPF=1.4 by 
the value of  Sd = 0.01618 at mode (i,j)=(1,1). 

Despite the increase in the levels of pre-loading and the consequent 11 % decrease in natural 
frequency as a result of including self-weight and the addition of self-weight plus 1500 N/m2, which 
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reduces the natural frequency in mode (1,1) from f=2.928 Hz to f=2.637 Hz (Fig.2(a)), it is noticed 
that displacement response from the THA of mode (i,j)=(1,1) remains effectively constant. Using 
Fig.1(b) shows that the displacement response spectrum for this earthquake in the range of frequency 
between f=2.928 Hz and f=2.637 Hz remains constant.  This explains the insignificant changes in 
displacement response of this mode using the THA. It should be noted that MPF of Eq. (1) should 
change for different levels of pre-loadings due to the changes in 𝑤�  and �̅�. But as the changes in 𝑤�  and 
�̅�  are insignificant, the MPF in Fig.2(b) remains constant for all levels of pre-loading.    

 
(a) Changes in natural frequency (b) Modal Participation Factor (MPF) 

Fig. 2 – Active modes in response and modal participation factor for a shell with 𝐿𝑦 𝐿𝑥⁄ = 1, B =
1.5 ×  10−6 𝑠2 

Unlike modes (1,1), The results from the modal time history analysis show that mode (5,1) 
displays quite considerable variations as the pre-loading increases. It shows maximum displacement 
of modes (5,1) equal to 0.032 m when the pre-loading is neglected. It increases to 0.055 m when 
including self-weight, then increases to 0.065 m corresponding to self-weight plus 1000 N/m2 
additional loading, and finally reaches to 0.069 m for self-weight plus 1500 N/m2 additional loading. 

The corresponding frequencies for these four cases of loading in are equal to 0.8562 Hz, 
0.4498 Hz, 0.3224 Hz, and 0.253 Hz, respectively as shown in Fig.2(a).  

Unlike mode (1,1), the earthquake displacement response spectra corresponding to these 
frequencies show significant variation in Fig.1(b). It changes from 0.1176 m, to 0.1967 m, then, 
0.2326 m, and finally 0.2443 m corresponding to the aforementioned changes in frequency, 
respectively. This corresponds to 107 % increase in response of mode (5,1) due to inclusion of self-
weight and 1500 N/m2 additional loading. 

The maximum displacement spectrum for mode (5,1) is then derived by multiplying 
MPF=0.28 by 𝑆𝑑, which is equal to 0.0329 m, 0.0551 m, 0.0651 m, and 0.0684 m, respectively. 
Comparing these results of 0.0329 m, 0.0551 m, 0.0651 m, 0.0684 m with the maximum 
displacements of 0.032 m, 0.055 m, 0.065 m, 0.069 m corresponding with mode (5,1), which are 
derived based on complete THA shows that they are effectively identical for practical purposes. 

It is concluded that the reason for the considerable variation of displacement of mode (5,1) is 
because the resulting frequencies fall into a part of the earthquake displacement response spectrum, 
for which there is a significant variation in 𝑆𝑑 . It should be noted that the significant decrease in 
frequencies are the result of the pre-loads representing a significant proportion of the critical buckling 
loads in this mode. These frequency changes become significantly effective as a result of the 
frequencies being at the sensitive area of the response spectrum. 
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Stresses can also be derived in a similar way to displacements. After finding the modal 
displacement, stresses would be derived by replacing them into Eq. (5) Maximum stresses are 
governed by multiplying the values of MPF of the selected modes by displacement response spectrum 
of the earthquake at the corresponding natural frequencies of the shell in that mode, and finally 
multiplying by stress factor given by the equation of stresses (Eq. (5)).  

𝑁𝑥 = 𝐸ℎ
1−𝑣2

 (−𝑢�𝑖𝑗  𝑗𝜋
𝑙
− 𝑣 𝑖𝜋

𝑅𝜙
�̅�𝑖𝑗 + 𝑣

𝑅
  𝑤�𝑖𝑗)   sin 𝑗𝜋𝑥

𝑙 sin 𝑖𝜋𝑦
𝑅𝜙      (5) 

As the distributions of responses are not the concern of this present study the double 
trigonometric series in Eq. (5) is not taken into account. In order to verify this method for stress, using 
Eq. (5) the values of 𝑁𝑥 = 𝐸ℎ

1−𝑣2
 (−𝑢�𝑖𝑗  𝑗𝜋

𝑙
− 𝑣 𝑖𝜋

𝑅𝜙
�̅�𝑖𝑗 + 𝑣

𝑅
  𝑤�𝑖𝑗)   are plotted in Fig.3 for each of the 

modes i=1, 3, …, 19, and j=1,3,5. For each value of i and j this factor is then multiplied by the MPF in 
Fig.2(b) and the displacement response spectrum corresponding to each frequency in Fig. 1(b). The 
results of this multiplication are shown in Fig.3. Comparing the maximum 𝑁𝑥 derived using this 
simplified method in Fig.3 and the maximum modal stress found using the THA shows that they are 
again basically the same. For example, the maximum value of stress resultant, 𝑁𝑥, at mode (1,1) using 
the THA is equal to  5.096 × 105𝑁/𝑚. Within current accuracy this is the same as in Fig.3(b), which 
arises from the multiplication of the MPF=1.4 by the value of 𝑆𝑑=0.01616 m for mode (1,1) by the 
value of 𝑁𝑥 = 2.282 × 107𝑁/𝑚2in Fig.3; the result would be equal to 1.4 × 0.01616 × 2.282 ×
107 = 5.096 × 106𝑁/𝑚. Comparing the maximum values of the rest of the using the THA with the 
results in Fig.3 confirms that they too are effectively the same. 

Using this method, a graph similar to the displacement response spectrum of earthquake 
(Fig.1(b)) can be plotted for different stress resultant. However, it should be noted that unlike the 
displacement response spectrum (Fig.2), which is entirely dependent upon the earthquake, the stress 
response spectrum is also dependent on the formulation of stress itself, which in turn is dependent to 
the geometry of shell. The stress response can then be derived by multiplication of the stress response 
spectrum by MPF. However, when stress responses are plotted in terms of frequencies as in Fig.4 it 
aids visualization of what range of frequencies are more important in the various membrane and 
bending stress resultants. It is also useful to find the maximum total stress resultant response using 
these maximum responses, which will be discussed in the next section.  

 
(a)                                                                     (b) 

Fig. 3 – (a) : 𝑁𝑥 = 𝐸ℎ
1−𝑣2

 �−𝑢�𝑖𝑗  𝑗𝜋
𝑙
− 𝑣 𝑖𝜋

𝑅𝜙
�̅�𝑖𝑗 + 𝑣

𝑅
  𝑤�𝑖𝑗�   based on Eq. (5) (b) Maximum modal 𝑁𝑥  

found by multiplying 𝑁𝑥 = 𝐸ℎ
1−𝑣2

 �−𝑢�𝑖𝑗  𝑗𝜋
𝑙
− 𝑣 𝑖𝜋

𝑅𝜙
�̅�𝑖𝑗 + 𝑣

𝑅
  𝑤�𝑖𝑗�by the MPF in Fig 3(b) and the 

Landers earthquake displacement response spectrum in Fig 2 for a shell having 𝐿𝑦 𝐿𝑥⁄ = 1, and 
𝐵 = 1.5 × 10−6𝑠2 
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As the maximum total responses are important in design, the only aspect needed to complete 
the discussion is to relate the maximum modal responses to the maximum total response of shell. For 
ordinary frame buildings this can normally be achieved using the modal combination rule. Next 
section deals with the modal combination rules, and focuses on two methods for investigating whether 
these methods give accurate approximation of the maximum responses for shells. 

 

 
(𝑎) 𝑁𝑥        (𝑏) 𝑁𝑦 

 
   (𝑐) 𝑀𝑥     (d) 𝑀𝑦 

Fig. 4 – Membrane and bending stress modal contribution for a shell having 𝐿𝑦 𝐿𝑥⁄ = 1, and 
𝐵 = 1.5 × 10−6𝑠2 (ignoring self-weight) 

2.2 Modal combination methods 
In the previous section the relationships between the modal maximum response, natural frequencies of 
shell, and displacement and stress response spectrum of an earthquake were developed. Using these 
relationships makes it easy to find the maximum responses such as displacements and stress resultants 
in each mode without the need to go through the complete time history modal analysis. 

As structural design is usually based on the peak total response values, the discussion would 
not be complete until the maximum modal responses could be related to the maximum total responses 
of the shell. This can be achieved using the modal combination methods. 

Chopra [6] has outlined several methods for combining modes, while mentioning that none of 
these methods give exact results as the governing results are not identical to the total response using 
the complete THA. The reason that the responses using one or other modal combination methods are 
not exact, is because the modal responses reach their peak values at a different instant in time and the 
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total maximum responses attains its peak at yet another instant in time. However, it is considered that 
the predicted approximate responses would be accurate enough for practical structural design analysis. 

In this section, two methods of modal combination will be discussed with their predictions 
compared with the known maximum total responses. The response of the shell using the THA, where 
the effects of pre-loading are not taken into account, will be examined for each of these methods. A 
total of 19 by 19 half-waves in both circumferential and axial directions has been included in the 
THA. 

The reason for not showing all contributing modes in the previous section was that the 
convergence of the results for total response was not the primary concern. For the sake of clarity of 
the plots, the contributions of modes with low responses were consequently neglected. 

Multiplication of 𝑆𝑑 by Eq. (2) is one of the methods to find the maximum response of each 
mode over the time history of the earthquake. The maximum modal response can then be used for 
estimating the maximum total response using one of the modes combining method. 

The maximum response of each mode can also be derived by multiplying MPF by 𝑆𝑑. It is 
worthy to mention that this form of superposition is meant to take account of the fact that the 
maximum response in each mode occur at different instants of time, but at specific spatial locations on 
the shell surface. However another study is performed and will be presented later in this section, 
which examines the validity of modal combination methods when they are found regardless of the 
time of occurrence and its location over the surface of the shell. 

The first method that will be presented here is the Square Root of the Sum of Squares (SRSS), 
first suggested by E. Rosenblueth as part of his PhD thesis [7], so that 

𝑟 ≈ (∑ 𝑟𝑛2)0.5𝑁
𝑛=1    (6) 

Where 𝑟𝑛 the peak response in each mode n, and r is the maximum value of the estimated total 
response. In order to check the validity of this method for shells, the maximum response of each mode 
regardless of time are presented in Table 1 for the shell having the natural frequency and MPF as in 
Fig.2.  

Table 1 –Maximum modal displacement for a shell having 𝐿𝑦 𝐿𝑥⁄ = 1, and 𝐵 = 1.5 × 10−6𝑠2as 
discussed in Fig.2 (a),(b). 

 

Using the SRSS method, the maximum total displacement would be 0.0914 m. By comparing 
the governing maximum response using the SRSS method against the total maximum response found 
from the THA of 0.0953 m, it will be noticed that there is a 4.2% error as can be seen in Table 2 for a 
shell with  𝐿𝑦 𝐿𝑥⁄ = 1, and 𝐵 = 1.5 × 10−6𝑠2. 

As Chopra explained [6] the SRSS method gives practically accurate estimates of the 
responses in structures with well-separated frequencies such as frames. However, for systems with 
closely spaced natural frequencies such as piping and multi-storey buildings with unsymmetrical plan 
it will not provides accurate responses. As the shell is a system with closely spaced natural 
frequencies, this method may not always be used reliably.  

(i,j) (3,1) (5,1) 

 

(1,1) 

 

(7,1) 

 

(9,1) 

 

(5,3)  

 

 

(3,3)   (1,3) 

 

(1,5) (1,7) (7,3) 

Max-
Disp 
(cm) 

0.082 

 

0.033 

 

0.022 

 

0.008 

 

0.002 

 

0.002        

 

 

0.002 0.002 0.001 0.001 

 

0.001 
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The next method for modal combination is the Complete Quadratic Combination (CQC), 
which is applicable to a wider range of structures and is suggested to provide accurate results for 
structures with closely-spaced frequencies [6]. The maximum total response using CQC method is 
derived using  

   (7) 

Where 𝑟𝑖𝑜 , and 𝑟𝑛𝑜 are the peak responses in the ith and nth modes and 𝜌𝑖𝑛  is the correlation 
coefficient for these two modes. 𝜌𝑖𝑛 varies between 0 and 1 and it is equal to 1 when i=n. Eq. (8) can 
be rewritten as the sum of the SRSS plus the additional term as 

  (8) 

The first term in Eq. (8) is identical to SRSS and is positive, however the second term may be 
positive or negative. Thus the result using CQC method could be either less or more than the 
governing results using SRSS method. There are several definition for the correlation coefficient 
proposed by researchers. However, in this section the Rosenblueth-Elorduy definition that is given by 
Newmark and Rosenblueth in the textbook Fundamentals of Earthquake Engineering [7] is used for a 
constant value of damping ratio, 𝜁, in all modes as 

   (6.5) 

where 𝛽𝑖𝑛 = 𝑤𝑖
𝑤𝑛

  is the ratio of frequencies in modes i and n.  

The maximum displacement prediction using the CQC method for the shell in Fig.2 is equal 
to 0.0974 m, which as can be seen in Table 2 for the shell with 𝐿𝑦 𝐿𝑥⁄ = 1, and 𝐵 = 1.5 × 10−6𝑠2 
has just a 2.2% error as compared with the maximum displacement of 0.0953 m using the time history 
analysis. This is lower than the 4.09% error using the SRSS method as shown in Table 2. 

As mentioned earlier two methods are chosen in this study to find the maximum responses of 
the shell. First method finds the maximum responses of the shell for every points over the surface of 
the shell but only regardless of the time. The second method finds the maximum responses of the shell 
regardless of where and when they occur. 

Table 2 provides the summary of the maximum displacement and stress responses for three 
cases of shell using the complete modal time history analysis (THA) method and compares with the 
responses using the SRSS, CQC at the same location where the maximum response using the time 
history analysis occurs.  

As mentioned, the peak responses using either SRSS or CQC method are governed by finding 
the maximum modal response regardless of the time of occurrence but taking into account their 
location over the surface of the shell. In other words it finds the maximum modal response at each 
point over the surface of the shell and combines them accordance with one of the combination 
methods (SRSS and CQC). In this way a maximum response would be attained for every point over 
the surface of the shell.  

 

 

 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017 

 

Table 2 – Comparison of the results between modal time history analysis, CQC, and SRSS for a total 
number of 19 axial and circumferential half waves including effect of location 

 𝐿𝑦 𝐿𝑥⁄  B THA SRSS CQC % error  

SRSS 

% error  

SRSS 

W (m) 1 

1 

2 

1 

1.5 

1.5 

0.0663 

0.0953 

0.0183 

0.0593 

0.0914 

0.0161 

0.0585 

0.0974 

0.015 

10.56 

4.02 

12.02 

11.76 

2.2 

18.03 

𝑁𝑥(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

1.0494 

0.8741 

0.2607 

0.9820 

0.9016 

0.2943 

0.9935 

0.9419 

0.2936 

6.43 

3.16 

12.91 

5.33 

7.77 

12.63 

𝑁𝑦(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

0.7897 

0.5737 

0.5835 

0.4707 

0.5918 

0.4294 

0.6623 

0.5825 

0.4170 

40.39 

3.15 

26.41 

16.14 

1.54 

28.54 

𝑁𝑥𝑦(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

0.9348 

0.6176 

0.4131 

0.6042 

0.5902 

0.3253 

0.6745 

0.6374 

0.3482 

35.36 

4.43 

21.25 

27.85 

3.21 

15.71 

𝑀𝑥(𝑁.𝑚) 

× 104 

1 

1 

2 

1 

1.5 

1.5 

2.5194 

1.7751 

1.5797 

1.6260 

1.3679 

1.7111 

1.9647 

1.3648 

1.4289 

35.46 

22.94 

8.32 

22.02 

23.12 

9.55 

𝑀𝑦(𝑁.𝑚) 

× 105 

1 

1 

2 

1 

1.5 

1.5 

0.6663 

0.4483 

0.1698 

0.4302 

0.3444 

0.1560 

0.4619 

0.163 

0.1575 

35.43 

23.16 

8.18 

30.67 

29.44 

7.26 

𝑀𝑥𝑦(𝑁.𝑚) 

× 104 

1 

1 

2 

1 

1.5 

1.5 

1.8188 

1.1770 

0.8243 

0.9580 

0.7249 

0.4833 

1.2093 

0.8038 

0.6165 

47.33 

38.42 

41.36 

33.51 

31.71 

25.20 

 

  

The modal combination methods are also used to find the maximum stress resultants. The 
maximum modal stress resultants shown in Table 2 for three cases of shells, are derived using the 
maximum modal stresses governed by the method described in section 2.1. The maximum stress 
responses are derived over the time history of earthquake and at each point over the surface of the 
shell. Same as displacements, the maximum stresses and their location are found using the THA 
method. The maximum stresses are then compared with the maximum stresses using the SRSS and 
CQC method at the location where the maximum stress resultants are found using THA method; these 
are reported in Table 2. 

In Table 2 the error in SRSS and CQC method are expressed as a percentage of the maximum 
result derived using the time history modal analysis. It is noticed that the peak response using 
approximate methods can be either lower or higher than the THA value. The error is different for each 
of the membrane and bending stress resultants; for example for the case of shell with 𝐿𝑦 𝐿𝑥 = 1⁄  
and 𝐵 = 1 × 10−6𝑠2, the error in Nx is less than the error in Ny, My, and Mx (Table 2). The reason 
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that the error is smallest in Nx is that the modes with higher frequencies do not contribute to the total 
response. However, modes with higher frequencies contribute to the total response more significantly 
in Ny, My, and Mx; so the error of using the combination methods are higher in these responses. The 
error in displacement for this case of shell (𝐿𝑦 𝐿𝑥 = 1⁄  and 𝐵 = 1 × 10−6𝑠2) is also small; again 
because the modes participating in the total responses have low frequencies. 

The SRSS and CQC methods do not give the same estimates of peak stress responses. 
Analysis on three cases of shells in Table 2 shows that the CQC method does not always produce 
lower percentage errors than the SRSS method as is often accepted by many researchers. 

However, another method is proposed in this research, which can be named as second 
approach for finding the maximum response. This method also uses the method of section 2.1 in 
finding the maximum responses not only over the duration of earthquake, but also over the surface of 
the shell. The displacement and the stress resultants using this method are shown in Table 3. 

As can be seen, the percentage of error for CQC and SRSS method for shells using this 
second method can be either higher or lower than the first method. However, the maximum 
displacement (W), 𝑁𝑥𝑦 and 𝑀𝑥𝑦 response in Table 2 seems to be the same as in Table 3. 

As can be seen by comparing Tables 2 and 3 some stress resultants have changed significantly 
as a result of taking into account the location over the surface of the shell in finding the modal peak 
responses; such as the error corresponding to CQC method in 𝑀𝑥 for a shell with 𝐿𝑦 𝐿𝑥 = 1⁄  and 𝐵 =
1 × 10−6𝑠2, that has reduced from 103.87 % to 9.55 % in Table 3. It is noted that using these two 
methods does not change the governing peak displacement response using SRSS method.  

The significant change in the result using CQC method based on the two aforementioned 
methods is a result of the cross-correlation coefficient being significant when the peak modal 
displacement responses are chosen, regardless of its location over the surface of the shell. This shows 
that CQC method is sensitive to the location of the peak modal responses over the surface of the shell 
and peak responses happening at different locations of the shell cannot simply be combined using the 
CQC method. In other words in CQC method, the maximum modal displacement responses that are 
derived regardless of the time of occurrence over the time history of earthquake but taking into 
account the location are more reliable. The maximum responses over the surface of the shell can then 
be found from the peak nodal responses. 

However, finding the peak responses regardless of time and location has the advantage of 
reducing the calculation time significantly. As both methods give the same displacement response as 
of SRSS method, the latter method can be accurately used for SRSS method. 

For the three cases of shells in Table 2 the maximum error using SRSS remain less than 
12.02% and for CQC less than 18.03% for displacement. However, for stress resultants such as 𝑁𝑦 the 
errors are respectively less than 40.39% and 28.54%. The error for axial stress, 𝑁𝑥, which has only the 
contribution from modes with low frequencies also remain less than 12.91% and 12.63% respectively 
using SRSS and CQC method. It can be concluded that the modal combination method can only give 
practically acceptable errors for displacement and axial membrane stress resultant. However, the 
stress resultants other than 𝑁𝑥 cannot be estimated accurately using the modal combination methods. 
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Table 3 – Comparison of the results between modal time history analysis, CQC, and SRSS for a total 
number of 19 axial and circumferential half waves neglecting effect of location 

 𝐿𝑦 𝐿𝑥⁄  B THA SRSS CQC % error  

SRSS 

% error  

CQC 

W (m) 1 

1 

2 

1 

1.5 

1.5 

0.0663 

0.0952 

0.0183 

0.0593 

0.0914 

0.0201 

0.0638 

0.864 

0.02 

10.56 

4.09 

9.84 

3.77 

9.34 

9.29 

𝑁𝑥(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

1.0494 

0.8741 

0.2607 

1.074 

0.9016 

0.2943 

1.135 

0.9121 

0.2813 

2.34 

3.15 

12.89 

8.16 

4.35 

7.90 

𝑁𝑦(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

0.7897 

0.5737 

0.5835 

0.7552 

0.5918 

0.6646 

1.0775 

0.7737 

0.8167 

4.37 

3.15 

13.90 

36.44 

34.86 

39.97 

𝑁𝑥𝑦(𝑁.𝑚−1) 

× 106 

1 

1 

2 

1 

1.5 

1.5 

0.9348 

0.6176 

0.4131 

0.6042 

0.5902 

0.3253 

0.6745 

0.6374 

0.3482 

35.37 

4.44 

21.25 

27.85 

3.21 

15.71 

𝑀𝑥(𝑁.𝑚) 

× 104 

1 

1 

2 

1 

1.5 

1.5 

2.5194 

1.7751 

1.5797 

2.6736 

1.8441 

1.9659 

3.9476 

2.9145 

3.2205 

6.12 

3.89 

24.74 

56.69 

64.19 

103.87 

𝑀𝑦(𝑁.𝑚) 

× 105 

1 

1 

2 

1 

1.5 

1.5 

0.6663 

0.4483 

0.1698 

0.5267 

0.3951 

0.1807 

0.6015 

0.412 

0.2509 

20.95 

11.87 

8.19 

9.73 

8.10 

47.76 

𝑀𝑥𝑦(𝑁.𝑚) 

× 104 

1 

1 

2 

1 

1.5 

1.5 

1.8188 

1.1770 

0.8906 

0.9580 

0.7249 

0.4386 

1.2093 

0.8038 

0.6233 

47.33 

38.41 

50.75 

33.51 

31.71 

30.31 

 

The results of this section show that the percentage of error is different for each of the membrane, 
bending stress resultant, and displacement responses. The results are also dependent on the material 
properties and geometry of the shell, which determine the natural frequencies of the shell. Using the 
combination methods for finding the displacements are more reliable than for stresses; this can be 
seen in Table 2. 

3. Conclusions 
A literature review was first performed to find the gaps in understanding of the dynamic analysis of 
roof shells. The equations of motion for a complete cylindrical shell were derived based on the energy 
formulation was used to find the equation of motion in roof shells. The method is based on the 
stationary of total potential energy for providing the equilibrium in the structure. This study led to an 
investigation to find a simple relationship between the modal participation factor, earthquake response 
spectrum and maximum displacement and stress resultant responses of the shells without going 
through the extensive time consuming time history analysis. The aim was to examine the accuracy of 
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the modal contribution methods to find the maximum responses of a shell. These methods are 
conveniently used for frame buildings and result in practically accurate results. 

Using the equation of the modal participation factor helps to identify the modes with higher 
contributions. The maximum modal displacements were then found by multiplying the mode 
participation factor (MPF) by the displacement response spectrum of the earthquake corresponding to 
the natural frequency of the shell in that mode. This showed that the mode having the highest MPF 
does not necessarily have the highest contribution to the total response. This is because the 
contribution of the mode to the total response also depends on the response spectrum of the 
earthquake at the natural frequency of the shell corresponding to that mode. 

The maximum stress responses were also derived by multiplying the maximum displacement 
response by the stress factor given by the equations of stress resultants. These were the same as the 
maximum modal responses using the time history analysis. The investigation on the accuracy of 
modal combination methods using the two methods of square-root-of-sum-of-squares (SRSS) and 
complete quadratic combination (CQC) showed that both methods estimated the maximum 
displacement and axial membrane stresses within the practically acceptable percentage of error; 
although the percentages of errors were different for various geometries of shells. However, the stress 
resultants other than axial membrane stress cannot be accurately estimated using either of these modal 
combination methods. 
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