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Abstract 
Numerical simulation of reinforced concrete structures is important in the assessment of nonlinear behavior of new and 
existing structures susceptible to earthquake loads. Columns are subjected in the general case to biaxial bending and varying 
axial loads during an earthquake and the interaction between these efforts has a strong influence in the nonlinear response, 
modifying the strength, stiffness and ductility of these elements. 

Several numerical models exists nowadays in literature for nonlinear dynamic analysis of beam-column elements that take 
into account the interaction between bending moments and axial load with different degrees of accuracy and robustness. 
The best way to test them is by contrast of numerical results with experimental data, but this is not an easy task mainly 
because laboratory tests involving cyclic biaxial bending with varying axial load are rare in literature.  

In this work a flexibility-based element with fiber discretization of the cross section on each integration point of the Gauss-
Lobato integration rule is used in order to reproduce part of an experimental campaign performed by other authors. Euler-
Bernoulli’s hypothesis is used to calculate deformations of the fibers and material nonlinearity is reproduced by uniaxial 
laws at each fiber of the cross section. Modified versions of Mander’s constitutive law and Menegotto-Pinto’s law are used 
for concrete fibers and reinforcement steel fibers respectively. With this model the nonlinear behavior of four identical 
cantilever columns subjected to different paths of imposed horizontal displacements that lead to biaxial cyclic bending in 
conjunction with variable axial load is simulated numerically. Results of the hysteretic behavior obtained by the numerical 
model and the experimental test data are overlaid and compared.  

Comparison shows that the numerical model used in the simulation is able to reproduce the maximum strength and the 
dissymmetry caused by variations of the axial load, also the general behavior and interaction among cyclic moments and 
axial load is reproduced. Differences appear in the post-peak response especially softening is quicker in the simulation than 
the registered response of the tested specimen. Also the peak displacement values obtained by the model are smaller than 
the measured one. Discrepancies are explained by the limitations and hypothesis of the element and constitutive laws used. 
Finally further developments to improve the accuracy are proposed. 

Keywords: Reinforced concrete columns, fiber-beam model, variable axial load, biaxial cyclic bending. 
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1. Introduction 
Reinforced concrete structures under seismic loads have their columns under the coupled effect of bending 
cyclic moment and variable axial loads. In particular, corner columns are subjected to biaxial cyclic moments 
and strong variations of the axial load. These variations are of major importance because the axial load has a 
strong influence in the strength, stiffness and ductility of the columns. [1]  

  The study of these elements is vital especially in the assessment of existing structures that were not 
designed using the current performance based codes. Several numerical models are available nowadays in 
literature that can reproduce with different levels of accuracy the complex response of reinforced concrete beams 
or columns but calibration with experimental data of this kind of elements is not an easy task due to the lack of 
experiments where the variations of the axial load is taken into account. [2, 3, 4] 

  In this paper part of the experimental campaign driven by Rodrigues et al [2], where a group reinforced 
concrete columns were tested under the effects of biaxial cyclic bending and variations of the axial load, is 
reproduced numerically in order to test the capabilities and limitations of a flexibility based fiber-beam element 
with Gauss-Lobato integration rule and Euler-Bernoulli's kinematic hypothesis [5, 6, 7]. Material nonlinearities 
are reproduced by uniaxial laws on each fiber of the cross section, Mander's [8, 9] constitutive law is used for 
concrete fibers and Menegotto-Pinto [10, 11] for the case of steel fibers. Numerical and experimental results are 
compared and the limitations of fiber-beam element and the corresponding constitutive laws are discussed. 

2. Description of the experimental tests 
The experimental campaign that is numerically simulated in this work was carried out by Rodrigues et al [2] 
making focus in the effects of variations in the axial load with biaxial cyclic bending. A total of 6 identical 
cantilever columns were tested under different paths of horizontal imposed displacement history with 
concomitant variations of the axial load. The main features of the test can be seen in Fig. 1. 

 
Fig. 1 – Reinforcement and dimensions of the experimental specimens (Rodrigues et al [2]) 

The horizontal top displacements were introduced by two orthogonal actuators attached to the column in 
the last 20 cm leaving 150 cm of free height to the column. The axial load was introduced by a vertical actuator 
with a special sliding device in order to reduce the friction between the column and the actuator. 

The specimens were tested with different horizontal displacement paths, the first two were uniaxial paths 
following the strong and weak directions of the cross section. The other four were tested following a rhomboidal 
path, a diagonal path (45º between the strong and weak direction), a quadrangular path and finally a circular 
path. Each path was applied in increasing nominal peak displacement levels (3, 5, 10, 4, 12, 15, 7, 20, 25, 30, ···, 
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80mm) with three cycles on each demand level. The axial load was applied relatively to the history of the strong 
direction displacement with a mean value of 300 KN (compression) and variations of ±150 KN, reaching its 
extreme values for the yield displacement (which was previously estimated) and being constant for greater 
displacements values, see Fig. 2.  The top displacements and applied loads were measured in order to be able to 
draw the force displacement hysteretic behavior in both strong and weak directions of the columns. A more 
extensive detail of the experimental campaign and results can be found in Rodriguez et al [2]. 

                    
Fig. 2 – Applied axial load related to the strong direction displacement (*) 

Only the four specimens with biaxial horizontal paths are taken into account in this work to make focus in 
the biaxial bending behavior with variable axial load. 

3. Numerical simulation 
3.1 General description of the model 
Numerical simulation of the four columns is made using a single 3D fiber-beam element with three integrations 
points for the Gauss-Lobato integration rule. Each integration point the cross-section of the column is meshed 
with 150 concrete fibers and 14 steel fibers, Fig. 3. 

 
 Fig. 3 – Characteristic and mesh of the simulation 
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The base node has his 6 degrees of freedom fully restricted and at the top node of the element only 
displacements in the Y and Z directions are restricted. Horizontal displacements are imposed at the top node on 
each restricted direction following the same history path that in the experimental campaign. Varying axial load 
was introduced as a concentrated load at the top of the element following the load history of the experimental 
campaign. 

Nonlinear pseudo dynamic analysis (mass and damping of the element are considered null) is performed 
using the software DINLIES, Möller [12].  Step by step Newmark’s integration method is used in order to solve 
the dynamic equations, and classical Newton-Raphson method is used for the nonlinear problem.  

In the following the element formulation and material models and properties are described. 

3.2 Fiber-beam model 
The numerical solution is obtained using a 3D flexibility based element with fiber discretization on each 
integration point of the Gauss-Lobato integration rule. This model was first introduced by Taucer et al. [5] and 
implemented by Möller et al. [7]. 

Fiber beam discretization of the cross section at each integration point, Fig. 4, permits to capture the 
interaction between axial force and bending moments by means of a kinematic hypothesis, in this case Euler-
Bernoulli´s hypothesis is taken into account. At the sectional level the process begins with a new set of sections 
generalized deformations, axial elongation and both bending curvatures. Shear and torsion are taken into account 
in an uncoupled elastic way in order to assure the equilibrium of the beam. With this deformations and the EB 
kinematic hypothesis axial deformations on each fiber are calculated as can be seen in Eq.1. 

 
Fig. 4 – Integration points and fiber discretization (Möller et al [7]) 
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Where ( )x e is the n-vector that contains the axial deformations ( iε for the i-th fiber) of the n fibers of the 
cross section, ( )x L  is the geometric operator of the cross sections that by means of the plane sections hypothesis 
relates axial deformations in the fibers with generalized deformations of the cross section ( )x d , here only axial 
elongation 0ε and bending curvatures Yϕ  and Zϕ are taken into account. 

Uniaxial material laws are needed in order to calculate the stresses on each fiber, in this case nonlinear 
constitutive laws are chosen for concrete and steel fibers. Once the stresses were calculated the normal force and 
bending moments are calculated by simple integration over the section Eq. 2, as well as the rigidity matrix, Eq. 
3.  
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Where ( )x D is the vector of generalized stresses or interior efforts composed by the axial force and both 
bending moments that are calculated by integration of the normal stresses of each fiber iσ . Also the rigidity 
matrix of the section ( )x k is computed by integration of the tangent modulus of each fiber iE  over the cross 
section. 

The element and sectional state determination in nonlinear problems has to be solved in an iterative 
manner. The process has three iteration levels, at the structural level a load control (classical Newton-Raphson 
with updated stiffness matrix) method is used, at the element level a displacement control method is used and 
finally another iteration process is made at the sectional level in order to assure inner equilibrium.  

The integrals of the element formulation are performed using the Gauss-Lobato integration rule which has 
the advantage of including the endpoints of the element where usually the nonlinear behavior concentrates.  

 Finally the flexibility formulation allows by means of proper force interpolation functions to satisfy the 
inner equilibrium among sections of the element and also avoids the shear-locking problem. 

3.3 Mander´s constitutive law for concrete 
The uniaxial constitutive law for confined and unconfined concrete proposed by Mander et al. [8] with 
modifications in the softening traction branch introduced by Martinelli et al. [9] is used, Fig. 5. This model 
allows for cyclic loading using a single backbone curve. Confinement is calculated in base of the transverse 
reinforcement amount and arrangement. 

 
 Fig. 5 – Stress strain curve with reloading for concrete fibers (Mander et al [8]) 

Material parameters are estimated using as base the experimental data from Rodriguez et al. [2] and also 
by the transverse reinforcement’s detail that can be seen in Fig. 1. Table 1 summarizes the material parameters 
used in the numerical simulation. 
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Table 1 – Material parameters for concrete 

cmf [MPa] cf ´ [MPa] ( )hcsysy sbA /=ρ  ( )hcszsz shA /=ρ  yhf [MPa] ek  

27.92 22.56 0.00126 0.00113 575.6 0.259 

 

 Where cmf and cf ´ are the mean characteristic compressive strength of concrete respectively. syρ and szρ are 
the volumetric rate of transverse reinforcement on each direction, yhf  is the yield stress of the transverse 
reinforcement and finally ek  is the effectiveness of confinement factor computed in base of the geometry of the 
section and the reinforcement detail. 

3.4 Menegotto-Pinto constitutive law for steel reinforcement 
The uniaxial constitutive law for steel proposed by Menegotto et al. [10] with modifications in the hardening 
part proposed by Fronteddu [11] is used in this work. The model reproduces the hysteretic behavior of 
reinforcement steel taking into account the well-known Bauschinger effect as can be seen in Fig. 6. 

 
Fig. 6 – Stress and strain curve for steel fibers (Fronteddu [11]) 

As in concrete, material parameters are deduced using as base the experimental data from Rodriguez et al. 
[2]. Table 2 summarizes the material parameters used in the numerical simulation. 

 Table 2 – Material parameters for reinforcement steel 

yf [MPa] E [MPa] EE p /  SUf [MPa] SUε [%] 

575.6 195 980 0.00251 682.8 22.04 

 

Where yf and SUf are the yield and ultimate stress respectively. E and PE  are the elastic and post yielding 
modulus respectively, and finally SUε is the ultimate strain. 

4. Results 
Results of the numerical simulation of the columns are presented in this section along with the experimental data 
from Rodriguez et al. [2]. The experimental and numerical results are overlaid in the following in order to check 
differences and similarities between both responses. Numerical simulation is driven until the 30 mm level of 
nominal peak displacement approximately, after this level numerical response diverges from the experimental 
one and is not considered in the following analysis. 
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In Figs. 7 to 10, the hysteretic behavior of the columns is presented by the shear vs drift curve for each 
horizontal path considered in both strong and weak directions of analysis. In numerical simulations shear is 
computed as the reaction in top restraints and drift is determined using a free height of 150cm as it was 
previously described. 

 
Fig. 7 – Rhomboidal path – (left) Strong and (right) Weak directions (*) 

 
Fig. 8 – Diagonal path – (left) Strong and (right) Weak directions (*) 

7 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

 
Fig. 9 – Quadrangular path – (left) Strong and (right) Weak directions (*) 

 
Fig. 10 – Circular path – (left) Strong and (right) Weak directions (*) 

Figs. 11 and 12 present the maximum envelopes of the previous shear-drift curves for each column under 
different load history paths and direction of analysis. 

 
Fig. 11 – Envelopes - (left) Rhomboidal and (right) Diagonal path (*) 
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Fig. 12 – Envelopes - (left) Quadrangular and (right) Circular path (*) 

(*) Figures were developed using as base the experimental data and figures from Rodriguez et al. [2] 

5. Comparison and discussion 
In this section differences and similarities between the experimental and numerical results are presented. 
Differences are explained thought the limitations of the fiber-beam model and constitutive laws used in this work 
and future improvements are identified.  

The numerical model presented is able to reproduce the general behavior of the columns in an acceptable 
way, also the interaction between the varying axial loads and the cyclic bending moments is captured as it can be 
seen in the hysteretic curves in Figs. 7 to 10. The peak strengths in both weak and strong directions of analysis 
obtained by the simulation have small differences with the ones obtained in the experimental campaign. Also the 
dissymmetry in the peak strengths between the positive and negative directions caused by the variations in the 
axial load is well captured by the model as it can be seen in the envelope curves, Figs. 11 and 12. 

The main differences among the experimental results and the numerical response appear in the post-peak 
response. The numerical model exhibits an abrupt softening after the strength reaches the maximum value. 
Another difference that can be acknowledged is that near the peak strength takes place for smaller displacements 
values in the numerical simulation than in the experimental tests. Finally the model is not able to follow the 
experimental test for high levels of nominal peak displacements. These differences can be, at least partially, 
explained by the limitations and hypothesis of the element and constitutive models used in the numerical 
simulation. 

The fiber-beam model, as it was already explained, uses the Euler-Bernoulli hypothesis to calculate fiber´s 
elongations. This hypothesis neglects shear deformations and also neglects inter-fiber equilibrium. Shear 
deformations are not taken into account in most applications and this hypothesis is valid for slender elements and 
low level loads, but once diagonal cracking appears the influence of shear deformations increases and cannot be 
neglected near the peak strength, as it was demonstrated by Bairán [13]. Also, as it was previously remarked, this 
model considers that each fiber behaves uniaxially and no interaction between fibers is taken into account (inter-
fiber equilibrium is violated), also the presence of transverse reinforcement is not considered at the sectional 
level, this leads to the problem that confinement and the effects of transverse reinforcement have to be 
reproduced by the constitutive law.  

Mander’s constitutive law considers a single and constant backbone curve which is computed for a single 
confinement pressure. This pressure is calculated by means of the amount and arrangement of the transverse 
reinforcement and is considered constant all over the nonlinear process. Varying axial load produces variations 
in the confinement conditions that cannot be reproduced by means of this law. Also in the nonlinear range the 
dilatancy phenomena modifies the transverse deformations and in consequence modifies the confinement 
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pressure. This constant confinement consideration in addition to the previous mentioned hypothesis of the 
element may affect the softening branch where the bigger differences between the experimental and numerical 
responses appear. Also the constitutive law doesn’t takes into account the low-cycle fatigue phenomena, which 
can also be a source of discrepancy.  

Other possible cause of error in the numerical simulations is the restrictions used in the bottom node. Full 
restriction of rotations may not be achieved because of the concentrate rotations that take place when small 
bond-slipping of the longitudinal reinforcement occurs, this rotations are of major importance when the peak 
displacement level increases.  

Similarities and differences here presented show that this kind of element and constitutive laws can be 
used with acceptable agreement for nonlinear analysis of reinforced concrete structures, but further 
developments are needed in order to improve the accuracy especially for large demand levels. At the element 
level the sectional models presented by Bairán et al. [14] Möhr et al. [15] showed to be able to reproduced 3D 
effects and inter-fiber interaction keeping the simplicity of a fiber-beam element framework, in this line a new 
sectional model and element is being developed. At the constitutive level, more sophisticated equations are 
available in literature for concrete, plasticity based, damage based, and coupled models have their own 
advantages and disadvantages, the choice to implement a new constitutive law for concrete for improve the 
accuracy of the model has to be made making emphasis in the robustness of the model. 

6. Conclusions 
In this work a flexibility based fiber-beam element with Gauss-Lobato integration combined with Mander’s 
constitutive law for concrete and Menegotto-Pinto law for reinforcement steel was tested by the simulation of an 
experimental campaign of 4 identical cantilever columns subjected to cyclic bending moments and varying axial 
loads.  

The numerical model showed to be able to reproduce the interaction between cyclic bendings and axial 
force and also the general response of the columns. Especially the peak strength of the column was well captured 
and the influence of varying axial load was also reproduced. This leads to the conclusion that this element is 
suitable for nonlinear analysis of reinforced concrete structures. Although, the simulation exhibits differences 
with the experimental results particularly after the peak strength was reached, the numerical response showed a 
quicker softening than the experimental test. 

The discrepancies were explained by the hypothesis and limitations of the presented models. The lack of 
accuracy in the determination of the real confinement state affects the softening branch of the numerical 
response, also the plane section hypothesis used in the fiber-beam model neglects shear deformations which have 
an increasing influence after the first diagonal crack takes place. 

 Further developments were discussed, particularly the development of a new element with sectional 
analysis capable of reproducing 3D effects without losing the simplicity of beam elements. Also the 
implementation of more sophisticated constitutive laws for concrete is desirable. 
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