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Abstract 
Horizontally curved bridges have been observed to be highly vulnerable to severe seismic damage, such as deck unseating, 
because of the strong tendency of their decks to in-plane rotation. The torsional demand of these bridges may dramatically 
increases when they are subjected to earthquake-induced pounding, as observed in Baihua and Huilan bridges during 2008 
Wenchuan earthquake in China. This paper is focused on studying the influence of seismic pounding, deck-abutment 
collision, on the torsional response of horizontally curved bridges in strong earthquakes. For this purposes, a three-degree-
of-freedom nonlinear model has been developed to capture key dynamic parameters affecting the seismic response of these 
types of bridges. In the model, the radial and azimuthal shear-displacement relations of the columns and their bilateral 
interactions are modeled by a coupled-biaxial bilinear hysteresis spring, but their torsional moment-rotation relations are 
molded by a linear spring; and the normal and tangential impact forces at the contact nodes between the deck and the 
abutments are modeled by Jankowski contact model and Karnopp friction model, respectively. Then, the nonlinear bridge 
model is utilized to perform a detailed parametric analysis on the torsional response of a prototype curved bridge based on 
variations of these key parameters of the model: (i) subtended angle of the deck, β; (ii) size of the gap between the deck and 
the abutments, δg; (iii) normalized static radial stiffness eccentricity, ηsr. The results obtained from this numerical analysis 
indicate that the seismic pounding has a noticeable effect on the in-plane rotation of the curved bridge deck particularly 
when the distance between the stiffness center and the curvature center of the deck is increased.  
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1. Introduction 
In the recent decades, horizontally curved bridges have been widely used in urban transportation networks 
around the world. The curved geometries of these bridges enable them to be suitably located in complex grade-
separated intersections and interchanges where there is a strong emphasis on aesthetic and space-compatible 
structural designs at the same time [1,2]. However, due to their irregular geometries and asymmetric stiffness 
and non-uniform mass distributions, horizontally curved bridges, similar to other types of irregular bridges such 
as skew bridges [3–5], are more susceptible to seismic failure than straight bridges [6–8]. It is also believed that 
multi-support irregular bridges, such as skew and curved bridges, are more susceptible to the rotational 
components of strong ground motions [9,10]. The unique structural features, inherent in horizontally curved 
bridges, have significant impacts on the amplification of the torsional response of the decks of these bridges 
particularly when they collide with the abutments during strong earthquakes (i.e. earthquake-induced pounding). 
The impact forces resulted from the collision will likely cause large radial and azimuthal displacements in the 
bearings at the abutments, and consequently, unseating of the decks from the abutments [1]. For example, it has 
been reported that seismic pounding was an effective factor in structural failures of Baihua and Huilan bridges 
during 2008 Wenchuan earthquake in China with a high moment magnitude of MW=7.9 [11–13].  

A large number of horizontally curved bridges either collapsed or suffered serious damage in the great 
1971 San Fernando earthquake in California [7]; and since then, the vulnerability of these bridges to seismic 
damage has been a subject of interest to many researchers. However, there have been few studies on the 
vulnerability of horizontally curved bridges to earthquake-induced pounding. Williams and Godden [14] 
conducted an experimental study on the seismic response of a small scale model of a curved RC bridge that 
suffered extensive damage during the 1971 San Fernando earthquake. The authors considered the effects of 
sliding and seismic pounding at the expansion joints and ductility in the columns. Ijima et al. [15] used analytical 
and experimental models to study the influence of seismic pounding on the collapse of the decks of skew and 
curved bridges. The study was inspired by observation of the deck unseating in these bridges because of seismic 
pounding in the 1995 Kobe earthquake in Japan. Wieser et al. [16] performed an experimental test on a 2/5 scale 
model to investigate the effects of deck-abutment collision on the overall seismic performance of horizontally 
curved bridges. Ruiz Julian et al. [17] studied the efficiency of cable restrainers in the protection of curved steel 
viaducts from deck unseating caused by seismic pounding. Recently, Amjadian and Agrawal [1] have carried out 
an extensive parametric study on the influence of seismic pounding on the rigid-body motion of horizontally 
symmetric curved bridges.  

This paper, using a three-degree-of-freedom nonlinear model, studies the sensitivity of the torsional 
response of horizontally one-way-asymmetric curved bridges to earthquake-induced pounding. The model is 
based on a recent work of the authors conducted to study the rigid-body motion of horizontally symmetric 
curved bridges subjected to earthquake-induced pounding. [1]. In this paper, this model has been employed to 
perform a detailed parametric analysis to particularly study the influence of different parameters on the torsional 
response of a prototype curved bridge affected by seismic pounding. 

2. Mathematical Modeling of the Problem 
The curved geometry of the deck of a horizontally curved bridge diverts the direction of the reaction forces of 
the columns from the principal axes of the bridge during an earthquake excitation that couples the torsional 
motion of the deck to its translational motions. This coupled motion may impose much worse condition on the 
motion of the deck when it is associated with seismic pounding between the deck and the abutments. Fig. 1 
shows the dynamic model used to deal with such features inherent in the dynamic behavior of horizontally 
curved bridges [1]. This model is valid under these basic assumptions: (i) the deck is rigid [3,4,18,19]; (ii) the 
soil-structure interaction is negligible [20]; (iii) the bearings used at the abutments act as ideal roller supports; 
(iv) the mass of the bridge is entirely attributed to the mass center of the deck [21]; and (v) the shear-
displacement relations of the columns are bilinear but their torsional moment-rotation relations are linear. 
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2.1 Dynamic model 

The general geometrical features of the proposed dynamic model are shown in Fig. 1. The in-plane rigid-body 
motion of the deck subjected to earthquake-induced pounding is formulated in the xy-coordinate system. 
However, the restoring forces of the columns and the impact forces between the deck and the abutments are 
described in the rϕ- and nt-coordinate systems, respectively, as shown in Fig. 1. The curved geometry of the 
deck is idealized by a circular arc represented by subtended angle β (0<β< π), radius R and width W. It is 
assumed that the curvature center of the deck is coincident with the origin of the xy- and rϕ-coordinate systems 
(i.e. point O(0,0)). The degrees of freedom of the model, uox, uoy, and θ, are assigned to this point. The y-axis is 
the axis of symmetry of the deck. The mass center of the deck, Cm(0,ym), is located on this axis. The polar 
coordinate of i-th column is Csi(rsi,ϕsi) in which angle ϕsi is bounded in the interval |ϕsi−π/2|<β/2 [1]. The 
restoring forces of i-th column is modeled with two bilinear translational springs with radial and azimuthal initial 
stiffnesses ksri and ksϕi, post- to pre-yield stiffness ratios αsri and αsϕi, and yield displacements dysri and dysϕi, 
receptively, and a linear rotational spring with stiffness ksθi.  

 

 
Fig. 1 – 3DOF dynamic model of typical horizontally curved bridges 

 

The y-coordinate of the mass center, ym, and the radius of gyration of the deck about the curvature center, 
ro, can be respectively calculated by the following expressions [1], 

1
2 2 2

m o2 2

sin1 12y 2 R , r 1
6 4

β
   β β

= + = +   ν β ν   
                                                     (1) 

where υ=L/W is aspect ratio of the deck (υ>1).  

2.2 Restoring forces of columns 

The restoring force vector of i-th column represented in the rϕ-coordinate system is Fsi={fsri, fsϕi, tsθi}T. The 
radial, fsri, and azimuthal, fsϕi, shear forces and their interactions during the earthquake excitation are modeled by 
the normalized form of Wang-Wen biaxial hysteresis model by disregarding its strength reduction effects [22]. 
However, for the sake of simplicity, the torsional moment, tsθi, is modeled by a linear spring. The effect of the 
natural damping is disregarded; it will be taken into account later when the equation of motion of the bridge is 
developed. Therefore, Fsi is given by [1], 
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si si si si(t) (t) (t)= +F K U H                                                                      (2) 

where Ksi=Diag(αsriksri, αsϕiksϕi, ksθi) is post-yielding stiffness matrix, Usi(t)={usri, usϕi, θ}T is deflection vector, 
and Hsi(t)={hsri, hsϕi, 0}T is hysteresis force vector in which hsri=(1-αsri)fysrizsri and hsϕi=(1-αsϕi)fysϕizsϕi where fysri 
and fysϕi are radial and azimuthal yield forces; zsri and zsϕi are dimensionless hysteresis variables given by the 
following coupled nonlinear first-order differential equations [22],    

( )n 1 n 1
sri s sri sri sri s s sri sri s i s i s s s i s i s sri

ysri

n 1 n 1
s i s s i s i s i s s s i s i sri sri s s sri sri

ys i

1z A u | u || z | [ sgn(u z )] | u || z | [ sgn(u z )] z
d

1z A u | u || z | [ sgn(u z )] | u || z | [ sgn(u z )]
d

− −
φ φ φ φ

− −
φ φ φ φ φ φ

φ

 = − β + γ + β + γ η 

= − β + γ + β + γ

     

     ( )s s iz φ
 η 

            (3) 

In Eq. (3), {As, n, γs, βs} are parameters that control the shape and the size of the hysteretic loop, ηs 
represents the biaxial interaction between the radial and azimuthal shear forces, and sgn(.) represents signum 
function. These parameters are selected in such a way that they represent an ideal bilinear hysteresis model with 
a biaxial coupled behavior along the r- and ϕ-axes [1]: As=1, n=25, γs=βs=0.5, and ηs=1. 

2.3 Impact forces 

The normal impact forces between the deck and the abutments are modeled by nonlinear viscoelastic model, 
known as Jankowski contact model [23,24]. This model consists of a nonlinear spring in parallel with a 
nonlinear damper to simulate the kinetic energy absorption and dissipation, respectively. The damping part only 
acts during the approach phase of collision, and consequently, most of the energy is dissipated in this phase. The 
amount of energy dissipated during the restitution phase is negligible. Furthermore, the tangential impact force 
(i.e. friction force) is modeled by Karnopp friction model [1,25], considering the effects of stick-slip 
phenomenon at the contact nodes. It is assumed that the collisions between the deck and the abutments occur at 
the corners of the deck denoted as #1, #2, #3, and #4 in Fig. 1. The contact forces at the left side for i-th (i=1 and 
4) contact node are, 
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                         (4) 

in which Npli={−cos(β/2), −sin(β/2), rpli}T, Tpli={−sin(β/2), +cos(β/2), 0}T, rpl1=R-W/2, and rpl4=R+W/2. The 
contact forces at the right side for i-th (i=2 and 3) contact node are, 
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in which Npri={−cos(β/2), +sin(β/2), rpri}T and Tpri={+sin(β/2), +cos(β/2), 0}T, rpr2=R-W/2, and rpr3=R+W/2.  

In Eqs. (4) and (5), pnai (t)δ  and ptai (t)δ  are relative normal and tangential displacements at the contact 

nodes, pnai (t)δ  and ptai (t)δ are relative normal and tangential velocities at the contact nodes (subscript “a” is 
associated with the abutment number, i.e. on left side: {a≡1; i=1, 4} and on right side: {a≡r; i=2, 3}), δg is the 
size of the gap, kpn is impact stiffness parameter, and ξpn is damping ratio. In the friction model, μs and μk are 
static and kinetic coefficients of friction, respectively, vs0 is a velocity limit with a small value below which the 
velocity of the contact node is assumed to be zero when the contact node sticks, and fetai(t) is the external force 
acting upon the deck at the contact node during the sticking phase, i.e. ptai (t) 0δ = . The force will be formulated 
in section 2.4.  

2.4 Equation of motion 

The equation of motion of the bridge is given by [1], 

o o o s p g(t) (t) (t) (t) (t) (t)+ + + + = −MU CU KU H F MU                                                  (6) 

where T
o ox oy(t) {u ,u , }= θU , T

o ox oy(t) {u ,u , }= θU    , and T
o ox oy(t) {u ,u , }= θU     are relative displacement, velocity 

and acceleration vectors of the curvature center of the deck, respectively, and T
g gx gy(t) {u ,u ,0}=U   is ground 

acceleration vector. The rest of matrices and vectors used in this equation are defined as follows: 

i) M is mass matrix of the bridge defined as, 

m

m o

M 0 My
0 M 0

My 0 I

− 
 =  
 − 

M                                                                     (7) 

where M is the total mass of the deck. 

ii) K is post-yielding stiffness matrix of the bridge given as, 

XX XY s s

XY YY s s
2

s s s s s

K K K r sin
K K K r cos

K r sin K r cos K r K

Φ

Φ

Φ Φ Θ Φ

− φ 
 = + φ 
 − φ + φ + 

K                                                   (8) 

where KXX, KXY, KYY, KΦ, and KΘ are defined as [1], 
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and (rs,ϕs) represents the location of the post-yielding stiffness center of the bridge in the rϕ-coordinate system 
defined as [1], 

s s s
2 2n n n

s i s i si si s i s i si si s i s i si si
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s s
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k r sin k r cos k r cos
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     α φ + α φ    α φ      = φ =
 
 
 

∑ ∑ ∑
                   (10) 

where |ϕs−π/2| < β/2. The static radial stiffness eccentricity is defined as esr0=rs0−ym in which rs0 is the radial 
coordinate of the pre-yield or static stiffness center (rs0=rs in Eq. (10) when αsri=αsϕi=1); and, the static azimuthal 
stiffness eccentricity is defined as esϕ0=ϕs0−π/2 in which ϕs0 is azimuthal coordinate of pre-yield or static 
stiffness center (ϕs0=ϕs in Eq. (19) when αsri=αsϕi=1).  

iii) C is damping matrix of the bridge defined based on Rayleigh damping method as follows, 

( )1 3 0
1 3

2ξ
= ω ω +
ω +ω

C M K                                                                   (11) 

in which K0 is pre-yield stiffness matrix (K0=K when αsri=αsti=1 and i=1,2, …, ns), ω1 and ω3 are natural 
circular frequencies of the first and third modes computed on the basis of K0, and ξ is critical damping 
coefficient assumed to be equal to 2.5%.  

iv) Hs(t)={hsx, hsy, τsθ}T is total hysteresis force vector of columns in which vector components hsx, hsy, and τsθ 
are defined as follows, 

s

s

s

n

sx sri si s i si
i 1
n

sy sri si s i si
i 1

n

s s i si
i 1

h h cos h sin

h h sin h cos

h r

φ
=

φ
=

θ φ
=

= φ − φ

= φ + φ

τ =

∑

∑

∑

                                                               (12) 

v) Fp(t)={fpx, fpy, tpθ}T is total impact force vector in the xy-coordinate system defined as, 

P pli pnli pli ptli pri pnri pri ptri
i 1,4 i 2,3

(t) f (t) f (t) f (t) f (t)
= =

= + − −      ∑ ∑F N T N T                                     (13) 

The external force fetaj(t) applied to the deck when the j-th contact nodes on the left side (a≡l; j=1, 4) or 
the right side (a≡r; j=2, 3) sticks (i.e. when T

ptaj paj o(t) (t) 0δ = =T U  ) is given by [1], 

6 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

( ) ( )1T 1 T 1 1 1 1
etaj paj paj paj o o s PSj gf (t) (t) (t) (t) (t) (t)

−− − − − −= − + + + +T M T T M CU M KU M H M F U                   (14) 

where FPSj(t) is defined as [1], 

PSj pli pnli pli ij ptli pri pnri pri ij ptri
i 1,4 i 2,3

(t) f (t) (1 )f (t) f (t) (1 )f (t)
= =

= + − δ − − − δ      ∑ ∑F N T N T                     (15) 

in which δij is the Kronecker delta; δij=1 when i=j and δij=0 when i≠j. 

3. Numerical Example 
The proposed analytical model is utilized to investigate the seismic responses of a curved bridge prototype 
subjected to earthquake-induced pounding. Fig. 2 shows geometrical details of this bridge. It is a prestressed 
reinforced concrete curved bridge consisting of a box-girder deck and four single-column bents. The deck is 
assumed to be rigid and monolithically connected to the bents. The main geometrical and dynamic parameters of 
the bridge are [1,26]: β=39.6°, R=305 m, L=210.8 m, M=2894 tons, Io= 2693×108 ton.m2, υ=20, rs=300.72 m, 
ym=299 m, esr0=1.72 m, and esϕ0=0 which implies that the bridge stiffness is symmetric with respect to the y-
axis, i.e. ϕs=π/2. 

 

 
Fig. 2 – Structural details of the curved bridge prototype; (a) plan, (b) longitudinal cross section, (c) transverse 

cross-section, (d) columns cross-sections, (e) bilinear force-displacement model of columns [1,26]. 
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Fig. 3 – Absolute acceleration response spectra of seven pairs of ground motion records applied along the (a) x- 

and (b) y-axes of the bridge model. 

 

The properties of the bilinear force-displacement behaviors of the columns along the r- and ϕ-axes are 
shown in Table 1. The dynamic model of the bridge is analyzed under a set of seven ground motion records 
selected from the PEER Strong Ground Motion Database [27]. Fig. 3 shows the absolute acceleration response 
spectrums of these ground motions and their geometric mean response spectra along the x- and y-axes. These 
records have been scaled to a PGA=1.0g representing a very high-intensity ground shaking. The torsional 
response of the model are taken as the mean of the responses calculated for each principal direction based on the 
recommendation of AASHTO seismic design guideline [28]. The main parameters of the contact model used in 
this study are the impact stiffness kpn, the damping ratio ξpn, the coefficients of static μs and kinetic μk friction, 
and the limit velocity of Karnopp friction model vs0. Table 2 presents the values of these parameters obtained 
from different analytical and empirical methods developed for concrete-to-concrete frictional impacts [1]. The 
equation of motion (i.e. Eq. (6)) is implemented in Matlab and is numerically solved by the 4th-order Runge-
Kutta method. In this paper, the size of the time-step is taken to be equal Δt=10-3 sec, which is not only 
adequately small to avoid numerical instability and computational error, but large enough to increase the 
computational speed [1]. 

 

Table 1 – Parameters of the bilinear force-displacement behaviors of the columns along the r- and ϕ-axis [1].  
Direction ks (kN/m) dys (cm) αs 
Radial (r) 16000 8 0.18 

Azimuthal (ϕ) 72000 5 0.08 
 

Table 2 – Parameters of the contact model [1]. 
kpn (N/m1.5) ξpn μs μk vs0 (m/s) 

2.75×109 0.35 0.625 0.5 10−5  
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Fig. 4 – Time histories of the torsional responses of the deck for the case of without pounding compared to those 

of with pounding; (a) rotation, (b) angular velocity, and (c) angular acceleration of the deck. 

 

In order to gain a general insight into the sensitivity of the torsional response of the deck to earthquake-
induced pounding, time histories of the rotation, the angular velocity, and the angular acceleration of the 
curvature center of the deck for the case of pounding are compared to those for the case of without pounding. 
Figs. 4(a-c) plot these results obtained from the nonlinear time-history analysis of the bridge under the x- and y-
components of 1995 Kobe earthquake while it has been assumed that δg=5 cm, β=39.6°, and esr0=1.72 m. It is 
observed that in contrast to the angular velocity of the deck, the rotation and the angular acceleration of the deck 
are significantly affected by the seismic pounding. Fig. 4(a) shows that the absolute maximum rotation of the 
deck is amplified by nearly 3 times from |θ|max=0.04° for the case of no pounding to |θ|max=0.11° for the case of 
with pounding. The collision between the deck and the abutments results in a permanent clockwise rotation of 
the deck as much as θ=−0.037° whose magnitude is almost 40% larger than θ=+0.027° for the case of no 
pounding. It can be seen from Fig. 4(b) that the angular velocity of the deck is not affected so much by the 
seismic pounding. However, Fig. 4(c) shows that the angular acceleration of the deck is extremely sensitive to 
the seismic pounding such that it experiences several pulses at the times of the impacts at the contact nodes. The 
largest one has a magnitude as much as |ӫ|max=17.5 deg/sec2 which is 20 times larger than the absolute maximum 
angular acceleration for the case of no pounding |ӫ|max=0.88 deg/sec2. Fig. 5(a-d) show time histories of the 
normal impact forces at the contact nodes #1, #2, #3, and #4, respectively. As can be seen, the number of 
impacts between the deck and the left abutment (i.e. impacts at contact nodes #1 and #4) during the earthquake is 
greater than that for the right abutment (i.e. impacts at contact nodes #2 and #3). Furthermore, the magnitudes of 
the normal impact forces for the left abutment are higher than those for the right abutment. These impact forces 
produces a clockwise torsional moment about the curvature center which is the main cause of the permanent 
clockwise rotation of the deck (θ < 0), as shown in Fig. 4(a). 
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Fig. 5 – Time histories of the normal impact forces at the contact nodes (a) #1, (b) #2, (c) #3, and (d) #4. 

4. Parametric Study 
The torsional response of horizontally curved bridges subjected to earthquake induced pounding is highly 
dependent on the parameters of the impact forces, the geometry of the deck, and the stiffness distribution of the 
columns. In order to identify the key parameters that affect these responses, a detailed parametric study is carried 
out on the curved bridge prototype by varying different parameters, including the size of the gap between the 
deck and the abutments, δg, from 2.5 cm to 27.5 cm with a step of 2.5 cm, the subtended angle of the deck, β, 
from 5° to 175° with a step of 17° (note that L is kept constant, L=Rβ=210.8 m, implying that the curved bridges 
considered with different β are equivalent [28]), and the normalized static radial stiffness eccentricity ratio, 
ηsr=esr0/ro, which can be simplified into following form,  

sn

2 2si
i 1

sr 2 2 2 2
s

sin sin2 12 2
n4 3 4

=

βφ   ν ν +β η = −      βν +β ν ν +β   

∑
                                               (16) 

It should be noted that the stiffness eccentricity defined here is based on its classical definition, i.e. it is measured 
from the mass center of the deck. Eq. (16) can be manipulated to vary the location of the stiffness center relative 
to the mass center which results in three cases: (1) ηsr<0 (asymmetric model, rs<ym), (2) ηsr=0 (symmetric 
model, rs=ym), and (3) ηsr>0 (asymmetric model, rs>ym). The horizontally curved bridge prototype is analyzed 
in these three cases in order to investigate the influence of the stiffness eccentricity on the torsional response of 
the deck. Two extreme arrangements are chosen for the columns on the plane of the bridge in the asymmetric 
cases of 1 and 3, as shown in Fig. 6 (a) and (c); Fig. 6(b) also shows the arrangement of the columns in the 
symmetric case, i.e. case 2. Fig. 6(d) shows the variation of ηsr with β for these three cases. It is seen that ηsr 
increases with β in cases 1 and 3, but it is zero in case 2 (ηsr=0). In order to keep this quantity equal to zero (i.e. 
to match the location of the stiffness center with that of the mass center) in all values of β considered, the 
azimuthal coordinates of the columns, ϕsi (i=1, 2, 3, and 4), have to be varied by β according to what shown in 
Fig. 6(e). The torsional response quantities of interest are the absolute maximums of the rotation and angular 
acceleration of the deck, i.e. max (|θ|) and max (|ӫ|), respectively. These response quantities are calculated for 
each pair of ground acceleration records in Fig. 3 by varying parameters discussed above, and then averaged to 
calculate the mean response quantities. 
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Fig. 6 – (a-c) Sketches of cases 1, 2, and 3 considered for the parametric analysis (d) variation of the normalized 
static radial stiffness eccentricity ratio, ηsr, with β for cases 1, 2, and 3; (e) variation of the azimuthal coordinates 

of the columns with β for case 2. 

 

 
Fig. 7 – Absolute maximum torsional responses of the deck of the curved bridge prototype for different δg and β; 
(a-c) rotation of the deck for cases 1, 2, and 3, respectively; (d-f) angular acceleration of the deck for cases 1, 2, 

and 3, respectively. 

Figs. 7(a)-(c) show 2D image plots of the absolute maximum rotation of the deck versus δg and β for cases 1, 2, 
and 3, respectively. It is seen that for δg > 22.5 cm, beyond the dashed lines, the colors of the images do not 
change with δg implying that the seismic pounding does not occur when the size of the gap is larger than 22.5 
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cm. It is also clear that the rotation of the deck increases with ηsr from case 1 to case 3, i.e. when the distance 
between the stiffness center and the curvature center is increased. The peak value of the rotation of the deck 
occurs in case 3 and for β and δg approximately in intervals 5° < β < 60° and 2.5 cm < δg < 7.5 cm, respectively. 
As the torsional moments of the columns are proportional to the rotation of the deck, tsθi =ksθiθ, we can expect 
that the peak of these responses occur at the same values for β and δg. Figs. 7(d)-(e) show 2D image plots of the 
absolute maximum angular acceleration of the deck versus δg and β for cases 1, 2, and 3, respectively. It is 
observed that, in contrast to the rotation of the deck, the angular acceleration of the deck is not very sensitive to 
the variation in the value of ηsr. The variation of this response quantity by δg and β has a quite similar trend in 
the three cases. It can be generally concluded that the peak value of the angular acceleration of the deck in these 
three cases also occurs for β and δg approximately in intervals 5° < β < 90° and 2.5 cm < δg < 7.5 cm, 
respectively. 

The results of the parametric analysis show that seismic pounding can significantly amplify the torsional 
response of the decks of horizontally curved bridges. Therefore, there is a need to protect these bridges from 
excessive in-plane rotation of the deck under earthquake-induced pounding. For example, seismic protective 
devices can be useful for this purpose [17,29]. 

5. Conclusion 
In this paper, the sensitivity of the torsional response of horizontally curved bridges subjected to earthquake-
induced pounding has been studied by a three-degree-of-freedom nonlinear model. In this model, the radial and 
azimuthal shear forces of the columns and their bilateral interactions have been modeled by a coupled-biaxial 
bilinear hysteresis model. The normal and tangential impact forces at the corners of the deck (i.e. contact nodes) 
have been modeled by Jankowski contact model and the Karnopp friction model, respectively. The bridge model 
has been employed to analyze the torsional responses of a one-way asymmetric curved bridge prototype (ϕs=π/2) 
to the deck-abutment collisions during strong ground motions. It has been shown that the rotation and the 
angular acceleration of the deck are more sensitive to seismic pounding than the angular velocity of the deck. 
Finally, a parametric analysis has been conducted on the curved bridge prototype by varying different parameters 
of the model, including the size of the gap between the deck and the abutments δg, the subtended angle of the 
deck β, and the normalized static radial stiffness eccentricity ηsr. It has been concluded that the rotation of the 
deck, and consequently, the torsional moments of the columns increase with the increase in the distance between 
the stiffness center and the curvature center of the deck. The peak value of these responses occur for the curved 
bridges with 5° < β < 60° and 2.5 cm < δg < 7.5 cm when their stiffness centers are located above their mass 
centers (ηsr > 0). 
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