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Abstract

The response of rigid freely rocking SDOF systems has been extensively studied. It has been shown that single large
rocking bodies, or single-story frames made of rocking columns capped with a beam of significant weight, are more stable
than their smaller, or lighter counterparts under analytical pulse and recorded ground motion excitations. Under such
excitations, the lateral forces carried by the rocking body, or the single-story rocking frame, are controlled at the uplift force
level and depend on the slenderness of the rocking elements. Furthermore, the excitation energy transmitted to the rocking
system is dissipated at every impact, with the frame having no residual displacement at the end of its rocking motion.

Such dynamic response characteristics make freely rocking systems very desirable for their superior seismic performance,
but very challenging to design. An analytical model developed to facilitate seismic design of structures supported by a
single-story rocking podium frame is presented in this paper. This model comprises an elastic single-degree-of-freedom
system fixed to a rigid beam that is rocking on rigid columns. As such, the model is an extension of a previously developed
model for a rocking podium frame. This model was used to develop rocking uplift and overturning response spectra for the
podium frame structural system under analytical pulse support excitations.
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1. Introduction

Seismic base isolation has been used for decades. It decreases the design forces for the isolated superstructure
and takes most of the displacement demand through a soft and specially designed layer between the structure and
the foundation. Usually this soft layer comprises either rubber or (concave) sliding bearings. Simplified models,
experimental validation of them, and code provisions have resulted in increasing use of seismic base isolation.

Another method of seismic isolation has been used in Russia and the former Soviet Union states. The soft
layer does not comprise bearings placed under the base slab, but the entire bottom story is intentionally designed
as “soft” (but with large displacement capacity). The concrete columns of this story are designed to uplift and
sustain rocking motion during an earthquake. Thus, the design forces in the superstructure are controlled by the
uplift force of the bottom story. The critical design parameters for such podium building structure are the
geometric properties of the columns. Column ends are protected by steel plates to avoid concrete crushing when
they uplift. Unlike concave or lead-rubber bearings (which develop hysteretic damping that results in residual
displacements), energy dissipation due to uplift and rocking is instantaneous and happens at every impact.
Therefore, the rocking podium system has minimal (if any) residual deformation and has a resilient behavior.
Added dampers can be used to diminish the magnitude of the rocking motion. Interestingly, full-scale dynamic
tests of rocking podium structures have been performed on real structures (Fig. 1). The structures were excited
using a hydraulic jack to push the structure to an initial displacement and then release it [1]. It should be
mentioned that this system does not rely on the size of the rocking elements for its stability, as the rocking
isolation techniques proposed for solitary columns or rocking assemblies do [2-30].

The force-displacement response of concave friction-pendulum and lead-rubber bearings can be
approximated by a bilinear envelope curve with positive stiffnesses. This allows for a rough approximation of
the base isolated structure response using a secant stiffness linear model with viscous damping [31, 32]. On the
contrary, a rocking podium structure has negative post-uplift stiffness (the restoring force decreases as the lateral
displacement increases). It has been proven that these kinds of structural systems cannot be approximated by a
SDOF elastic systems and, hence, the widely used elastic response spectra are not applicable [5].

This paper presents a simplified model to describe the behavior of an elastic structure sitting on a rocking
podium. The model was validated using the results from small-scale experiments performed in the Institute of
Structural Engineering (IBK) of the Swiss Federal Institute of Technology (ETH) in Zurich [33].
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Fig. 1 — Full-scale dynamic tests of a rocking podium structure [1]
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2. Proposed Analytical Rocking Model

The proposed model is an extension of the model presented in [16, 20]: An elastic SDOF system is added on top
of a rigid rocking frame. Fig. 2 shows the model in its initial and uplifted (rocking) position. In order for it to
represent rocking podium buildings, it is assumed that the dynamic response of the superstructure can be
adequately described using an elastic SDOF. The elastic superstructure is assumed to have no distributed mass
along its height and the top mass is assumed to be concentrated. Since the columns are identical with the same
dimensions and a rotational inertia I, around their center of mass, the rigid cap beam (with mass my) translates in
its plane without rotation.
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Fig. 2 — Dynamic model of a rocking podium structure.
Left: Initial position. Middle: Rocking position. Right: Dimensions of a column

The slenderness « of the column governs the rocking behavior of the podium structure. It is defined as:

_28_B
2H H
where 2B is the width and 2H the height of one column. Evidently, assuming that the columns of the rocking

frame are adequately protecting against corner crushing, the displacement capacity of the first floor is equal to
2B.

tan o

M)

The mass ratios y (for the cap beam) and # (for the superstructure), and a rotational inertia factor 1 are
introduced:

— mb _ mt 2
4 2m_ 7 2m, @)
A= . 3
mCRZ ( )

where 4 depends on the shape, size R and mass distribution of the columns. For a rigid block with an evenly
distributed mass m. the factor 4 is 1/3.

2.1 Equation of Motion Before Uplift and Uplift Criterion

The SDOF system representing the structure on the rocking podium has a fixed-base natural frequency w,
and a viscous damping ratio ¢. Before uplift of the rocking frame, its equation of motion is:
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U, + Zé/a)sut + a)szut =-U, (4)
A single column [2] and an array of N free-standing columns capped with a rigid beam [16] uplift when:
|U'g|> gtan(«) (5)

In the model presented herein, the deformability of the superstructure changes the uplift criterion.
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Fig. 3 — Left: Overturning moment and story shear of the superstructure. Right: Forces at incipient uplift.

Fig. 3 (right) shows the forces acting on the columns at incipient uplift (for 8 < 0). Applying the principle
of virtual work for a positive Uy and a resulting virtual rotation of -60 at this instant yields:

2-00(Bm.g—HmU, )+0660-2B(m,g+m.g)—3560-2HmU, +060-2HV, =0 6
cg cg bg cg b™g s ()

Vi =m, (a)szut + Zé/a)sl]t) (7

It is assumed that the rigid cap beam is heavy enough such that the overturning base moment of the SDOF
superstructure cannot separate it from the supporting columns. Combining Eq. (6) and Eq. (7) yields:

U, (m, +m,) = gtan(a)(m, +m, +m )+ a’mu, + 2{o,mu, (8)

With Eqg. (2) the uplift thresholds for both positive and negative ground accelerations are:
1+2y+2n

" . 2
ug =i{gtan(a)v}+(a)§ut +2§a)sut)1+7;7/ (9)

For top light superstructures (n << y) the ground acceleration limit given by Eqg. (9) will converge to the
values given by Eq. (5).

2.2 Equations of Motion After Uplift

Lagrangian formulation is used to derive the equations of motion after uplift:
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daL oL _
dtog, og (10)
L=T-V

where T is the kinetic energy stored in the system and V the potential energy defined by Eq. (11). Qq is the
generalized form for a conservative force, derived from virtual work W done in the system for a displacement
oqr.

V=—[F.dr (11)
_W
qu - 5qr (12)

To simplify the computation, vertical and horizontal translations of the rigid cap beam, both depending
solely on column rotation angle 6 (Fig. 2), are introduced:

u, = 2R(£sina —sin(+a - 0))

13
V, = 2R(cos(za —0)—cosa) =
The first and second derivatives with respect to time of Eq. (13) are:
U, = 2RO cos(+a — 6)
- .. - (14)
U, = ZR[Q cos(za —0)+0° sin(za — 0)]
V, = 2R@sin(xa —0)
(15)

v, = ZR[ésin(ia —0) - 6% cos(+a —6’)]

The top mass displacement is captured as a total displacement with components u, and v, where v, is
assumed to be equal to the cap beam displacement v,,. The kinetic energy in the system is:

T=T +T, +T, :%mt (u? +\'/f)+%mb (2r6)’ +2%m€ (RO) +2% Wik (16)

where I, is the rotational inertia around the center of mass of a single column. Eq. (16) can be simplified,
considering that

v, =V, (17
holds, to:
=-1m (u2+4stin2(+a—e)éz)+1m (2R49')2+21m (R9)2+21/1m (RH’)2 (18)
2 t\ Mt - 2 b 2 ¢ 2 ¢

The potential energy in the system is:
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V =2Rg (mt +m, + Z%mc)cos(ia—9)+%mtwf (u, —u, )2 +m,u,

(19)
. 1 .

— 2R, [mb - 25 mcjsm(ia -0)

To account for damping in the system, the virtual work performed by a viscous damper positioned
between the cap beam and the mass of the superstructure is:

SW = f, -89, =—c(u, U, )- (U, —Su, ) = -2 me, (U, -, )-(Su, —2Rcos(+a —60)350)  (20)

where u, and its time derivative are defined by Eq. (13) and Eq. (14), respectively. Applying Eqg. (10) to the
superstructure mass degree of freedom, uy, yields:

mq+mﬂfwfﬂﬂ+mﬂf?Q§MQo%—%) (21)

Reformulation leads to the first of the two equations of motion:

Ui, + 2o, (U, — 2RO cos(+a —0) )+ @’ (u, — 2R (+sina —sin(+a - 0))) =i (22)

9
The similarity to Eq. (4) is obvious.
The equation of motion for the other degree of freedom, 6, can be determined similarly. Namely:
m,4R*G +m 2R*0 (1+ A)+m4R*[ Fsin’ (+a - 0) - 0° cos (+a — 0)sin (+a —0) |
+2Rg (mt +m, + Z%chsin (xa—6)+2R0, (mb - Z%mcjcos(ia -0) (23)
—2Rm,@? (u, —u, )cos(+ta —6)—4REm e, (U, —U, )cos(+a —0) =0
Eqg. (23) can be simplified and rewritten as:

9[37+%(1+/1)+3775in2 (ia—ﬁ)} _ 37[ 67 cos (< — 0)sin(+a —6)
p? (277+27+1)sin(ia—<9)—%' 0% (27 +1)cos (£~ 0) (24)

+ 3727;;%_[605 (u, —u, )cos(+a — )+ 24 (U, —u, )cos(+a —0) |
where p is a normalized size parameter with units [1/s], defined as:

2_ 39

" 4R (25)

P

2.3 Impacts

The proposed rocking model dissipates energy through structural damping of the SDOF model of the
superstructure and through rocking impacts of the columns. Two equations are needed to treat the impact and the
energy dissipated at impact. The model proposed by Housner [2] presumes that impacts are instantaneous and
that the contact forces between the rocking column and the surfaces are concentrated at the pivot points.

6
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Therefore, at the moment of impact, the pivot point instantaneously moves from O to O’ and vice versa (see Fig.
3). The above assumption leads to Conservation of Angular Momentum (CoAM) of each column during impact.
Moreover, it is assumed that the elastic deformation of the superstructure is small compared to its size, so CoOAM
is applied in the undeformed configuration. Then CoAM yields the first equation needed. The second equation
comes from the assumption that the total horizontal velocities of the top mass before and after impact are equal:

%)

\tﬁ

u = L]t,before (26)

The above assumptions yield the following equation for the coefficient of restitution:

t,after

2

sin’ (a)(2y+ 2n +;j

after
before 2(14_1)4_7/4_77

(27)

Eqg. (27) can be compared to the expressions for coefficient of restitution of other, simpler, systems. With
n =y =0 it yields exactly what Housner proposed for his rigid block, and with # = 0 its solution is equal to the
expression of Makris and Vassiliou [16] for an array of free-standing columns capped with a free-standing rigid
beam.

2.4 Uplifted Frequency

Once the podium is uplifted, the frequency that the superstructure SDOF is oscillating with changes. To compute
the uplifted frequency, the eigenfrequency equation

K —?,M|=0 (28)
is solved. The authors acknowledge that in the presence of damping, the above equation would be formally
correct only if damping satisfies the Caughey O’Kelly condition [34], which is not the case. However, since the
damping of the superstructure is small, Eq. (28) is expected to give a good approximation of the uplifted
frequencies. This was experimentally confirmed for other elastic uplifting systems [27].

First, the equations of motion (Eq. (22) and Eq. (24)) are linearized. Then, the gravity and ground motion
loading terms are neglected. The remaining equations of motion can be expressed in matrix form:

3 . . 3nw? cosa
3y+=(1+A)+3ysina 0| 6 3pwicosia -—=——""|(6 0
y+ L+ A)+37 U+ nw? cos’ a = m:(oj 9
0 1 [\t —2Rw cosa @’ !
Solving the eigenvalue problem for Eq. (29) yields:
4 3 -2 3 _ 2 2 3 _
;| 3y +3nsin a+z(ﬂ +1) |- @? 0 3;/+377+Z(/1+1) =0 (30)

The eigenfrequency analysis reveals the two distinct mode shapes of the podium structure. The first one is
overturning of the podium structure with a natural frequency of 0 Hz, a rigid body motion mode. The second one
is the vibration of the SDOF system when the podium structure is uplifted. In this state the natural
eigenfrequency ws,, is amplified compared to its fixed-base counterpart, ws, and is given by Eq. (31):
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s,up

A+(4y +4n+1)
. =
A+(4y +4nsin’ o +1)

For heavy superstructures (7 — o) the amplification factor simplifies to 1/sin(«).
2.5 Excitation
Analytical pulses were used to excite and analyze the dynamic response of the proposed analytical model of a

rocking podium structure and a rocking podium structure specimen tested on the ETH IBK shaking table.
Symmetric and antisymmetric Ricker pulses (Fig. 4) were used:
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Fig. 4 — Analytical pulses: Left, symmetric Ricker (Mexican hat) pulse; Right, antisymmetric Ricker pulse

3. Model Validation Against Test Data

In order to validate the proposed analytical rocking model a specimen shown in Fig. 5 (left) was developed [33].
To the extent possible, the scaled specimen was designed to be physically similar to a prototype rocking podium
structure that has realistic properties. Therefore, the specimen beams and cap beam were designed to be as stiff
as possible (to approach the rigid columns and cap beam assumption) and as light as possible (the columns of the
prototype structure are a small part of its total weight). The superstructure could not be represented by a single
mass mounted on a single threaded rod fixed to the rocking podium structure (as was done in [29]), because of
the propensity for out of plane motion. Therefore, a frame-like structure with a significant depth was chosen to
ensure



16™ World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017

Test No. 2
top weights
16 - pwWelg = 15
\top plate ot
h, elastic columns ~
—><-t uy [mm]
13 L L 14 ot
AN TR i plae i
slide restrainers ekl or
rigid columns grouna [
(o]
infrared
o3 markers .
y
a_ gl
5 6 9 10 base plate ol
B8 ] . _led A
B shake table 2

Fig. 5 — Left: Model of a rocking podium structure. Right: Experimental vs. analytical results

that the motion of the SDOF system is restricted to one plane. Similarly, the rocking columns were constrained
to move in one plane only.

A realistic structure would have a podium story height of 3m. Due to the laboratory space and test conduct
constraints, the specimens was scaled down by a length factor of 6. To preserve acceleration scaling, the
excitation ground motions used were scaled in time. For more details on the scaling, an interested reader is
referred to [33].

Fig. 5 (right) shows the comparison between the response of the proposed analytical model and the
response of the podium structure specimen to an antisymmetric Ricker wavelet with a, = 0.20g and T, = 0.30s
(at the scaled model scale). At the Prototype scale this value corresponds to a SDOF system period of 0.74s. The
analytical model (excited by the applied shaking table excitation signal) matches the recorded response of the
specimen quite well.

4. Spectra

Fig. 6 plots rocking spectra for the rocking podium structure for different parameter settings. From left to right,
the natural period T, of the superstructure SDOF was increased from 0s (rigid) to 1s (deformable) (T, e {0s,
0.1s, 0.5s, 1s}) corresponding to ws/ p values of 28.4, 5.7, and 2.8. From top to bottom, the weight of the
superstructure, defined by Eqg. (2),, was increased (n € {10, 50, 100}). Assuming that additional floors on top of
the rocking one weigh the same, #/y can be interpreted as the number of additional floors fixed to the rocking
podium structure (n/y € {1, 5, 10}).

The spectra at the bottom (#/y = 10) left (Ts = 0s) of Fig. 6 corresponds to the spectra of a rocking rigid
frame [16] with y =10-(1+10) = 110. For a podium story height of 3m the size parameter p (Eq. (25)) is
2.214 Hz. In order to overturn the structure (6/a > 1) with a symmetric Ricker wavelet with T, = 1s and
wp [ p = 2.83 the pulse peak acceleration a, has to be 3.5 times the uplifting acceleration (iy = 0.159. For a pulse
with a peak acceleration just 2.5 times the uplifting acceleration the maximum rotation of the base column is
only 0.29 6/a. Close to the overturning limit state, the rotation grows fast with increasing a,. The spectra
illustrate this superbly with their growing colored areas.
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All computed spectra show a similar trend. Overturning only happens for pulses in the long pulse duration
range with moderate to high peak ground accelerations. For pulses with periods between 0.7s and 0.95s
(3 < wy I p <4) the structures can only be overturned by pulses with peak ground accelerations on the order of
0.9g or more. From a certain point on, here w, /p>5 or T, <0.6s, it is essentially impossible to overturn the
structure by a symmetric Ricker pulse.

Fig. 7 plots the minimum overturning acceleration for the 12 spectra in Fig. 6. In the short period range,
the podium structure with a deformable SDOF superstructure is more stable, while in the long period range it
becomes less stable than the podium structure with a rigid SDOF superstructure. For a SDOF superstructure with
period Ts =0.1s, the system behaves essentially as its rigid counterpart. For longer superstructure periods
(Ts > 0.5s) the influence of deformability is beneficial for short period pulses and detrimental for long period
pulses. The green and blue lines in Fig. 7 indicate this trend. This can be attributed to pre-uplift resonance of the
superstructure since T, is between 0.95s and 1.4s in the region 2 < w, / p < 3.

The influence of the weight of the superstructure has a smaller effect than its natural period. As Fig. 7
shows, the performance of heavier structures is only marginally better than that of their lighter counterparts. This
aligns well with what [16] stated. Increasing y from 10 (3 =0) to 20 (n=1) only slightly improves the
performance of the podium structure.

softer superstructures

seinjonnsiadns JaiAeay

. ] (L
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
wp/,'p wp/,'p Wp/p

Fig. 6 — Rocking spectra (maximum base rotation, 6/a) of a rocking podium structure with y = 10 and different
values for T (0s, 0.1s, 0.5s, 1s) and #/y (1, 5, 10) subjected to a symmetric Ricker wavelet (“Mexican Hat™)
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Fig. 7 — Overturning spectra for rocking podium structure subjected to a symmetric Ricker wavelet

Conclusions

A model to compute the rocking response of rocking podium structure with a deformable cantilever fixed on top
of it has been proposed. This model extends the previously developed model [16]. The proposed modified model
was verified and validated by comparing the computed response to the response measured in experiments
described in the companion paper [33]. The model was then used to construct rocking spectra for rocking
podium structures with an elastic oscillator on top exposed to Ricker wavelet ground motion excitations.

Subjected to a symmetric Ricker wavelet, a deformable superstructure with T, > 0.5s that is fixed to a

rocking podium structure improves the performance of the system in the short period range of the exciting
ground motion while it only marginally decreases the stability of the system in the long period range. The weight
of the superstructure does not significantly affect the response of the system when the rocking podium structure
is heavy compared to the weight of the supporting columns (y > 10), which is the case in typical structures.
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