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Abstract 

In this article a new bidirectional tuned liquid column damper (BTLCD) is proposed for controlling the seismic response of 

structures. The device acts as two independent and orthogonal tuned liquid column dampers (TLCDs), but due to its 

configuration it requires less liquid than two equivalent independent TLCDs. The equations of motion of the system formed 

by the BTLCD and the primary structure to be controlled, are obtained by means of Lagrangian dynamics explicity 

considering the non symetrical action of the damping forces. First, the primary structure was assumed to have two degrees 

of freedom (DOFs). Assuming that the system is excited by a base acceleration that can be considered to be a white noise 

random process, the optimum design parameters of the device were obtained to minimize the response of the primary 

structure. The optimum design parameters are presented as expressions covering a wide range of possible configurations for 

the device in a controlled structure. The use of a BTLCD to control the seismic response of several DOF structures was also 

studied, showing that if the structural response occurs mainly in two perpendicular modes, then the optimum design 

parameters for two DOF structures can be used. Finally, experimental analysis of the BTLCD for controlling the seismic 

response of 3-story structure scale model are developed in order to verify the effectiveness and accuracy of the equations 

and design procedures proposed herein. 
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1. Introduction 

More than 50% of the world's population lives in cities. The continuous growth of urban areas, together with the 

development of modern construction techniques, have resulted in an increasing number of tall buildings. These 

types of structures are characterised by its flexibility, with long vibration periods and low intrinsic damping. 

Consequently, when subjected to dynamic loads such as earthquakes, tall buildings develop oscillations that may 

persist long after the events themselves have ceased. The vibration levels of such structures may exceed the 

serviceability criteria, causing discomfort to occupants. In some cases the vibration may even be greater than 

agreed safe levels, causing possible damage to nonstructural or structural components. Several devices have been 

proposed to reduce the structural response of tall buildings. Among these, passive energy dissipation devices 

have been widely accepted and used in several structures [1]. These type of devices absorbs part of the energy 

supplied to the structure by external actions, such as winds or earthquakes, thereby reducing its response. 

Although there are many kinds of passive dampers, tuned liquid dampers (TLD) stand out due to its advantages, 

such as their low cost of manufacture and maintenance. There is also practically no weight penalty to the 

building if the water is used for other purposes such as to prevent the spread of fire, or for drinking. 

One key type of TLD is the tuned liquid column damper (TLCD). First proposed by Sakai et al. [2], in essence 

this device consists of a U-shaped liquid tank. When the device is subject to an external perturbation causing a 

displacement of the free Surface of the liquid, gravity acts as a restoring force, allowing it to oscillate. A 

restriction is positioned in the centre of the horizontal section of the device, which together with the friction, and 

the sudden change in flow direction between the horizontal and vertical sections, produces an energy dissipation 

mechanism that dampens the oscillation of the liquid. Several investigations have been carried out to the 

determine the optimum design parameters of TLCDs. Gao et al. [3] studied TLCD optimisation for sinusoidal 
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type excitations by numerical means. Kareem and Yalla [21] determined the optimum design parameters for one-

DOF primary structures subjected to random-type actions. More recently Shum et al. [4] proposed optimal 

tuning parameters for base-excited damped structures. Considering the nonclassical nature of the damping 

forces, Wu and Hsieh studied the dynamic characteristics of the TLCD, and showed the existence of two coupled 

natural frequencies between the primary structure and the device [5]. Wu et al. proposed a design guide for 

TLCDs and primary structures subject to random wind loading [6]. Ghosh and Basu [7, 8] studied an alternative 

TLCD configuration to control short period and nonlinear structures, connecting the device via a spring to the 

primary structure to be controlled. Another option for controlling short-period oscillations is the use of 

pressurized air columns as shown by Shum et al. [9]. The use of multiple TLCDs for seismic applications has 

also been studied, showing that the use of such configurations does not necessarily imply an improvement in 

structural control compared with a single TLCD. However, their use increases robustness with respect to errors 

in estimating the dynamic parameters of the controlled structure [10, 11]. Multiple TLCDs have also been 

studied for the reduction of coupled lateral and torsional vibrations in long span bridges [12, 9]. 

Although the use of TLCDs can be an efficient way of reducing the response of buildings, one major 

disadvantage is their inability to act in two perpendicular directions. This can be very useful for controlling the 

structural response of buildings for two perpendicular modes with high participation factors, as in the case of 

several tall buildings. The vibrational control of such structures using TLCDs has been the subject of research by 

various investigators. One of the first attempts to use a bidirectional TLCD was made by P.A. Hitchcock in 

1997. The device can be regarded as several TLCDs that share a common horizontal mass of water [13]. In 2010, 

Lee et al. Proposed the use of a bidirectional tuned and sloshing damper, which acts as a TLCD in one direction 

and as a sloshing damper in the perpendicular direction [14]. 

In this paper a new bidirectional tuned liquid column damper is proposed. The device acts like a TLCD in two 

orthogonal directions; thanks to its configuration, the mass of liquid required is reduced compared with two 

independent TLCDs. The first objective of this study was to derive the equations of motion of the system formed 

by the BTLCD and the primary structure to be controlled, when both are subject to a base acceleration. The 

formulation of the equations of motion, by means of Lagrangian dynamics, explicitly considers the non-classical 

damping inherent in the system. The optimal parameters are derived assuming that the base acceleration can be 

expressed as a white noise random process. Although several previous investigations have dealt with the 

determination of the optimal parameters, in this study the non symmetrical action of the damping forces, as 

shown by Wu and Hsieh [5], are explicity considered in the derivation of the optimal tuning parameters of the 

BTLCD. Based on this characterisation, the optimum parameters minimising the mean square displacement of 

the controlled structure are found for both directions. The optimal design parameters of the device are presented 

as functions of the mass ratio, , the shape factor of the device, , the ratio of the cross-sections of the vertical 

and horizontal parts of the device, , and the critical damping ratio for the primary structure, . Finally, an 

optimal design procedure for BTLCD in several degrees of freedom structures is proposed.  

2. BTLCD description 

The device proposed is shown in Fig.1, and can be regarded as four single TLCDs combined in one unit. The 

configuration of the BTLCD, which in plan view has the shape of an annular rectangle, can be adjusted to two 

different frequencies of oscillation by modifying the total length of the liquid conduits. A restriction or orifice 

located in the mid-point of the horizontal tanks is used to control the damping of the oscillation of the liquid 

inside the device. For the purpose of describing the motion of the liquid mass inside the BTLCD, two degrees of 

freedom are selected: displacement of the liquid in the containers parallel to the  direction, , and 

displacement of the liquid in the containers parallel to the  direction, .  
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Fig. 1 – Schematic view of the BTLCD and its main geometrical properties. 

The proposed BTLCD also requires less liquid compared with other configurations. In using two single and 

perpendicular TLCDs, it can be seen that when the oscillation is in one of the principal directions, the liquid in 

the TLCD oriented perpendicular to this direction performs no useful function, and it  becomes a penalty mass. 

In the BTLCD, it is only the liquid inside the horizontal conduits between the vertical columns that has no use 

under this condition. The use of TLCDs in a crossed configuration also requires a greater amount of liquid than 

the proposed BTLCD. This is due to the fact that the BTLCD, understood as four single TLCDs, shares the 

vertical columns, there being no requirement for individual vertical columns for each of the four TLCDs. 

3. BTLCD and the controlled structure equations of motion 

The system under investigation is shown in Fig.2 and can be separated into two substructures. One of them is the 

BTLCD and the other is the two-DOF primary structure. As indicated in Section 2, the motion of the liquid 

inside the BTLCD is defined by  and , which measure the displacement of the liquid relative to the mass 

of the primary structure in the  and  directions, respectively. The motion of the primary structure is described 

using the degrees of freedom  and , which measure the relative motion between its mass and the ground in the 

 and  directions, respectively. If the entire system is now subject to a base acceleration defined by  and 

, then the equations of motion of the system can be derived using the Lagrange equations, [15].  

 

 

 

Fig. 2 – A two degrees of freedom primary structure with a bidirectional tuned liquid column damper. 

 
where  and  correspond to the total kinetic energy and the total potential energy of the system,  is the i-th 

generalised coordinate, is the generalised non conservative force associated with , n is the total number of 

degrees of freedom of the system, four in this case, and  is the time. 
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Assuming that the fluid is incompressible and the transverse velocity profile of the liquid is constant, implying 

that the fluid flux is turbulent, the kinetic energy and the potential energy for the entire system can be readily 

obtained. The equations of motion of the system can now be obtained by substituting the corresponding terms 

into the Lagrangian equations. By doing so we obtain: 

 

                      (2) 

 

where the coefficients  and  are the linear equivalent damping forces of the device [6], 

 is the total mass of the system;  and   are the liquid mass 

inside the horizontal conduits parallel to the and  directions, respectively;  and  are 

the quotients between the areas of the vertical columns and the the horizontal conduits in the  and  directions, 

respectively;  and  are the effective liquid masses in the  and  directions, and are defined by: 

 and  where  and  are the effective lengths 

in the  and  directions; and finally  and  are the equivalent stiffnesses of the 

device. 

In order to obtain more general results from the equations of motion, the system of Eqs. (2) can be rewritten 

using nondimensional parameters, resulting in the following system of equations: 

 

                             (3) 

 

In the system of Eqs. (3), the parameters   and  are the natural frequencies of 

oscillation of the device;  and  are the frequencies of oscillation of a structure 

with the same stiffness as the primary structure, but with a mass equal to the total mass of the system; 

 and  are the critical damping ratios of the device;  

and  are the critical damping ratios of the structure with the same stiffness as the primary 

structure, but with a mass equal to the total mass of the system. The parameters  and  

can be related to the terms:  and  which essentially define the shape 

factors of the device. It is clear that when ,then  and .  

3.1  Equivalent damping for random base acceleration 

The nonlinear equations of motion derived in the previous section can be replaced by equivalent linear ones with 

known solutions. The difference, or error, between the linear equivalent representation and the actual nonlinear 

one can be written as:  (directional subscripts will be omitted for clarity), where 

 represent in general terms the nonlinear damping force. In this case, the expression of  

is a function of the flow resistance. Assuming the flow is turbulent [16], and minimising the mean square value 

of the error, , it can be shown that: [17, 18] 

 
Where is assumed that the probability density function of the nonlinear damping force is Gaussian [17, 6, 18]. 

The Eq. (4) can be rewritten as: 
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From the Eq. (5), the flow resistance coefficient can be obtained as a function of the frequency of oscillation, 

, and the critical damping ratio of the device, . 

4. BTLCD Optimum design parameters for random white noise base acceleration 

4.1  Undamped primary structure 

Assuming that the base acceleration is represented by a Gaussian white noise process with constant power 

spectral density , response of the primary structure can be expressed as [19]: , 

where  is the transfer function between the base acceleration and the displacement of the primary structure 

in the  direction, using integral tables [19] the the mean square displacement can be written as 

 
The terms  and  are detailed: 

 

 

 
 

where  is the frequency ratio. Returning to Eq. (6), the mean square of the displacement of the 

primary structure can be obtained as a function of , , , ,  and . The value of  is mainly given by the 

problem itself, and can be related to  and . The parameters ,  and  can be determined by the designer at an 

early stage. It can also be shown that the optimal value of  is 1 [6], and as the value of  (  when ) 

approaches to 1, the reduction in the response of the primary structure increases [6, 20]. This implies that a 

device with equal cross-sections ( ) and with the largest possible horizontal dimensión is always 

preferable. Of course, it is not always possible to obtain these conditions, but they nevertheless represent a 

desirable design. For instance, architectonic restrictions may not allow large plan dimensions of the device, 

forcing the reduction of the shape factor . The values of  and  that minimize , given by the Eq. (6) can 

be expressed as indicated in Eq. (8) and Eq. (9): 

 

 

 

4.1  Damped primary structure 

Unlike the previous case, obtaining closed expressions for the optimum design parameters  and  is far too 

complex, and a numerical optimisation procedure must be used instead. Here we use the normalised mean square 

of the displacement of the primary structure as the parameter to be minimized, i.e.: , 

where  is the mean square of the displacement of the structure, with the same stiffness and damping as the 

structure to be controlled, but with a mass equal to the total mass of the system. In order to provide design 

expressions that cover most practical cases, the numerical optimisation was performed considering the following 

range of values: ; ;  and . 
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In the Fig.5 the results of the numerical optimisation procedure are shown. The following numerical expression 

for the optimum frequency ratio, , as function of , , and  for  is proposed. 

 

 
where the first term of the right-hand side of Eq. (10) is the optimum frequency ratio for the undamped primary 

structure, Eq. (8), and  is the difference between these terms and the optimal frequency ratio obtained by the 

numerical optimisation procedure. Using curve fitting,  can be adjusted as a power function of , as shown in 

Eq. (11). This equation used in combination with the Eq. (10), gives a close approximation to the optimal 

frequency ratio found by numerical optimisation procedure. 

 

 
The values of the optimum critical damping ratio of the device can also be adjusted using curve fitting. In this 

case the optimal damping ratio can be written as: 

 

 
where  is the difference between the optimum damping values for undamped primary structure, Eq. (9), and 

those obtained by the numerical optimisation procedure for the damped primary structure. The difference  , is 

again adjusted as a power function in , for , as follows: 

 

 
 

 
Fig. 5 – Optimum frequency and critical damping ratios values for  

5. BTLCD for several degrees of freedom structures 

 

Considering a several degrees of freedom structure with BTLCD, the equations of motion can be found by 

means of the Lagrange equations for the system, which can be written in vector notation as [15]: 

 

 
In this case we have a total of  equations of motion,  being the total number of levels of the primary 

structure. Once the kinetic energy and potential energy are found, the equations of motion of the entire system 

can be written as: 
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 where 

 

 
and 

 

 
 

where  are the degrees of freedom of the primary structure,  is the influence matrix of , and 

 is the vector of the external displacements. It should be noted that the  and  

components of the influence matrix should be equal to 1, ,  and  are the mass damping and stifness 

matrix of the primary structure. 

Examining the system of Eqs. (15), it remains clear that the damping matrix is non symetrical. The last two 

equations of the system of Eqs. (15), which describe the motion of the liquid inside the device, remain as: 

 
 

 
 

The first  equations of the system of Eqs. (15) can be rewritten in terms of modal coordinates, , 

after premultiplying these equations by . Assuming classic damping matrix of the primary structure, we can 

write the j-th equation of Eqs. (15) as follows: 

 

 

 
 

If we need to control vibrational modes along two orthogonal directions simultaneously, and these modes are 

widely representative of the structural response, we can express the displacements of the i-th level of the primary 

structure as: , where  and  are the controlled modes in two perpendicular 

directions. Using the foregoing approximations, the Eq. (19) can be reduced to the following two equations of 

motion for the coordinates  and : 

 
 

 
 

where ,  and , the definitions of terms ,  and  are analogous but in this 

case use  instead of . A closer look at the latter definitions shows that the optimal location of the device 

should at the position with the largest modal component. This reduces the mass of the equivalent structure, , 

to its minimum possible value, thereby yielding the largest posible mass ratio between the device and the 

equivalent structure. If we examine the system of Eqs. (20) and the Eqs. (18), and compare them with the system 

of Eqs. (2), it remains clear that they differ only in the terms  and .  
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6. BTLCD design example 

A BTLCD will be designed to control the response of the first two perpendicular modes shapes of a 3 story scale 

model shown in Figure 9, with a total mass 270[kg]. The periods of oscillation, damping ratios and mode shapes 

were identified empirically using the Eigensystem Realization Algorithm (ERA) by means of pullback and hit 

test. The periods of oscillation of the two first translational modes are 1.52[seg] and 1.10[seg] for X and Y 

direction, respectively. Since the modal displacement is greater in the roof, that is the optimal location of the 

device. The equivalents properties of the single degree of freedom structures are: effective mass in  direction: 

, effective stiffness in  direction: , 

effective mass in Y direction: , effective stiffness in 𝑌 direction 

  

 

 
Fig. 9 – Left figure shows the 3-story scale model used for the experimental analysis(left). Right figure shows 

the BTLCD along with its main dimensions. 

 

The BTLCD for controlling the first and second mode of the building example is shown in the right side of 

Fig.9. The actual total liquid mass inside the BTLCD reach the  and the optimal critical damping ratios can 

be calculated using Equation (12), which leads to  and . In order to validate these 

damping values, shaking table test were performed. The BTLCD was subjected to three different filtered white 

noise processes, in which the duration varies between 10 and 15 min. For each test, empirical damping ratios 

were identified using the Multivariable Output Error State Space (MOESP) method, and theoretical damping 

ratios were obtained by Equation (5), where it is consider the standard deviation of the liquid velocity calculated 

for each one of the time ranges analysed. These results are shown in Figure 10, and it can be seen the good 

agreement between the mean of the theoretical damping values and the damping values measured 

experimentally. 
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Fig. 10 – Experimental damping versus damping obtained by Equation (12). 

 

 
Fig. 11 – Experimental transfer functions from shaking table acceleration to BTLCD. 

 

Theoretical and experimental transfer function of the device are also compared and shown in Figure 11. The 

device is subject to the action of a filtered white noise applied on its base with energy in the  

band, and which peak displacement, velocity and acceleration are as follows: ,  and 

, respectively. To measure the coupled effects, the BTLCD was inclined relative to the direction 

excited by the shaking table, where five inclination angles are investigated, . The 

periods and critical damping ratios of the BTLCD can be obtained from the transfers functions between the base 

acceleration and the liquid displacements inside the device. After applying the Fourier transformation to 

Equation (18) and the fact that the total volume of liquid shal be conserved, the transfer functions can be 

expressed as follows: 
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Where  is the transfer function of the vertical liquid free surface and  and  are the transfer 

functions of the liquid displacements inside the horizontal conduits of the device, which is indicated in the right 

expression of Equations (21) (notice that the directional subscript have been removed for clarity). The measured 

natural periods and critical damping ratios were  and , which are very close to 

the theoretical values  and . 

Once analyzed and verified dynamic properties the BTLCD, ten seismic records were applied to the structure 

with its configuration with and without BTLCD, in order to compare the structural response, hoping verify 

reductions in the response of the building model that includes the seismic control device. Records tested were 

Concepción Centro, Constitución, Llolleo, Maipú and Valparaíso horizontal records of Maule 2010 earthquake, 

Valparaíso record of Algarrobo 1985 earthquake, El Centro 1940 earthquake, Gilroy and Yerba Buena Island 

records of Loma Prieta 1989 and Arleta Station record of Northridge 1994 earthquake. The most remarkable test 

was the one developed with the Concepción acceleration record from the Maule 2010 Earthquake, because the 

structural response in both principal directions to this record was the one that was mainly given by the first 

translational modes of vibration, not like most of the results, because upper vibration modes were excited easily 

due to the high structure flexibility. The results from these experimental tests are shown in the following figures. 

 
Fig. 12 – Power Spectrum for the displacement response, Concepción 2010 record. 

 
Fig. 13 – Maximum responses, Arias intensity and RMS in X Direction, Concepción 2010 record. 
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Fig. 14 – Maximum responses, Arias intensity and RMS in Y Direction, Concepción 2010 record. 

7. Conclusions 
In the present study, we have proposed the use of a new device that acts as two independent and orthogonal 

TLCDs combined in one single BTLCD unit, for controlling the seismic response of structures that have 

vibrations occurring essentially in two mutually perpendicular directions. First, the BTLCD was used as a 

seismic control device for two DOF structures. Using an equivalent linear formulation of the nonlinear forces 

from the liquid flow inside the device, by means of Lagrangian dynamics it was possible to write a set of linear 

equations of motion of the BTLCD and the two DOF primary structure to be controlled. The optimal tuning 

parameters of the BTLCD were then obtained by minimizing the response of the primary structure when subject 

to white noise base acceleration. The reductions in the mean square value of the primary structure displacement 

show that the effectiveness of the BTLCD is greater when it is used to control low damped structures. As the 

damping of the structure increases the reductions become smaller; however, in these cases the use of energy 

dissipation devices is usually unnecessary. The application of the BTLCD in structures with several degrees of 

freedom was also studied. In this case the equations of motion of the BTLCD and the primary structure were 

written using the vector formulation of Lagrangian dynamics, which leads to a system of equations that can be 

reduced if the response of the primary structure occurs mainly in two perpendicular modes. Using this 

consideration, the system of equations was transformed into a system which is similar to the system of equations 

for the BTLCD and the two DOF primary structure. The optimal tuning parameter found can then be used to 

design the BTLCD as a seismic control device for multiple DOF structures. An iterative method of rapid 

convergence to facilitate the design of the device is proposed. Finally, the experimental analysis of a 3-story 

structure with and without BTLCD was developed for ten seismic records and here it is shown the analysis under 

the action of Concepción 2010 seismic records (Maule 2010 Earthquake). First it was design the BTLCD for 

controlling the structure response and its dynamic properties were verified experimentally. Then the comparison 

results of the structure response with and without BTLCD show that the device performs well, and the reduction 

of the structure displacement and the rapid response decay obtained revealed that the device increases the 

damping of the controlled structure. From the analysis of all experimental results, it can be noticed that the 

higher vibration modes of the structure without BTLCD were excited several times, which meaned that the first 

and stronger assumption (structural response in each direction controlled by the first mode) was not fulfilled. 

Therefore, when this was the case, consequences of BTLCD implementation could not be foreseen and there 

were cases where it helps to reduce the excitation of higher modes and situations where not. On the other hand, it 

should be remarked that minimization of the expression  does not guarantees the 

reduction of maximum displacement, but what it does is to reduce the dispersion of the displacements in 
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comparison with the average displacement, which is cero. In other words, the amplitude of the displacements 

decreases faster when a BTLCD is incorporated to the system. Therefore, increase the damping ratios associated 

to the first translational modes is what it is expected from implementation of BTLCD and, if the structural 

response is mainly controlled by these vibration modes, the same effect will be seen in the global response. 
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