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Abstract

A wide range of approximate methods has been historically proposed for performance-based assessment of frame buildings
in the aftermath of an earthquake. Most of these methods typically require a detailed analytical model representation of the
respective building in order to assess its seismic vulnerability and post-earthquake functionality. This paper proposes an
approximate method for estimating story-based engineering demand parameters (EDPs) such as peak story drift ratios, peak
floor absolute accelerations, and residual story drift ratios in steel frame buildings with steel moment-resisting frames
(MRFs). The proposed method is based on concepts from structural health monitoring, which does not require the use of
detailed analytical models for structural and non-structural damage diagnosis. The proposed method is able to compute
story-based EDPs in steel frame buildings with MRFs with reasonable accuracy. Such EDPs can facilitate damage
assessment/control as well as building-specific seismic loss assessment. The proposed method is utilized to assess the extent
of structural damage in an instrumented steel frame building that experienced the 1994 Northridge earthquake.

Keywords: Approximate method, Rapid structural damage assessment, Steel moment-resisting frames, Instrumented
buildings
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1. Introduction

An important difficulty in current methods of rapid assessment of seismic vulnerability of frame buildings arises
from the fact that they typically require detailed engineering inspections. Sophisticated analytical model
representations of the respective building are often needed. These may cause long delays in getting back a
building to operational stage even in cases that would most likely be classified as safe and functional after the
inspection. The consequences of these delays may be detrimental in terms of social and economic costs
particularly for infrastructure that is critical for emergency-response operations such as hospitals, schools and
governmental buildings.

The performance-based earthquake engineering (PBEE) framework [1-3] utilizes a seismic demand model
of structural and nonstructural building components for computing the earthquake-induced economic losses.
This model characterizes the relationship between the engineering demand parameters (EDPs) and the ground
motion intensity in a probabilistic manner. For such purpose, nonlinear building models are subjected to a suite
of ground motions and the building EDPs are computed based on nonlinear response history analyses (NRHAS)
[4]. A number of researchers have proposed probabilistic seismic demand models for building EDPs given the
seismic intensity of a ground motion [5-12].

Current standards [13, 14] for computing building EDPs rely on approximate methods that typically
employ equivalent single-degree-of-freedom (SDF) systems (e.g., displacement coefficient method in ASCE/SEI
41-13 [13]) and the nonlinear static procedure [15] in an effort to reduce the computational cost of NRHA. Such
methods are not able to estimate important EDPs such as the residual story drift ratios and peak floor absolute
accelerations (PFAs) that control stakeholder decisions for building demolition as well as repairs in the aftermath
of an earthquake. Erochko et al. [16] proposed a predictive equation for estimating residual story drift ratios of
steel moment-resisting frames (MRFs) and buckling-restrained braced frames (BRBFs). FEMA P-58 [2, 3]
provides a simplified procedure for probabilistic seismic demand analysis for low- and mid-rise buildings with
moderate inelastic demands (e.g., story drifts ratios are limited to 4% radians; story drift ratios should not exceed
4 times the corresponding yield drift ratio without excessive component strength and stiffness degradation).
More recently, Ruiz-Garcia and Chora [17] proposed the coefficient method for estimating residual story drift
demands in multi-story steel frame buildings through regression analysis. The aforementioned methods require
the explicit use of nonlinear building models. Therefore, detailed information of the building geometry and
material properties is necessary in this case. Such models require an appreciable time investment for their further
validation. In that sense, nonmodel-based approaches based on principles of structural health monitoring (SHM)
could be a valuable alternative [18, 19]. For instance, Noh et al. [20, 21] proposed EDP indicators for nonmodel-
based seismic damage assessment of steel frame buildings as well as reinforced concrete bridge piers by
observing the changes in wavelet energies of the first mode natural frequency of the building/bridge pier
undamaged state over time.

This paper presents an approximate method for assessing the seismic vulnerability of steel frame buildings
with MRFs. The proposed method is nonmodel-based and it utilizes a wavelet-based damage sensitive feature
(DSF) as discussed in [20, 21] in order to estimate story-based EDPs in steel frame buildings with MRFs at
various levels of seismic intensity. The proposed method only uses basic building information such as its total
height for EDP computations. The efficiency of the proposed method in predicting story-based EDPs is
compared with that of the FEMA P-58 approximate method [2, 3]. An instrumented steel building that
experienced the 1994 Northridge earthquake is also used as a case study to demonstrate the potential use of the
proposed method in predicting story-based building EDPs for structural and non-structural damage control of
instrumented steel frame buildings.

2. Damage sensitive features and validation with large-scale data

In order to develop an approximate method for rapid earthquake assessment of steel frame buildings with MRFs,
a nonmodel-based approach is employed based on SHM concepts. In particular, wavelet-based DSFs are utilized
as discussed in [20, 21]. The wavelet-based DSFs are computed based on the absolute acceleration response
history recorded at the roof of a building. The DSFs are then used as EDP indicators by monitoring the change in
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wavelet-based DSFs conditioned at a seismic intensity. The techniques considered in this paper are briefly
described in the following subsections.

2.1 Wavelet-based damage sensitive features

Given a scale parameter a > 0, and time shift parameter b, the continuous wavelet transform (CWT) can be
mathematically described as follows,

E 1 .(t-b
= —y | — 1
c(ab) jwf(t)\/at//( . )dt @)
in which, f(t) is the response history data; w(t) is the mother wavelet function (the Morlet wavelet basis function
[22] is used as a mother wavelet due to its resemblance to earthquake pulse); and * is the complex conjugate. A
set of basis functions, which are termed as daughter wavelets, is established by continuously dilating and
translating the mother wavelet function, y(t). The CWT coefficients, C(a, b) are then obtained by convoluting
the basis functions and response history data, f(t) (e.g., recorded absolute acceleration response history at the
building roof). In order to calculate the wavelet-based DSFs, the normalization method for wavelet energy at its
first mode natural frequency is used as proposed in [21]. Therefore,
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in which, Egcie IS the wavelet energy at scale & over time as defined in [23]. This energy can be computed as
follows,
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the total wavelet energy, E of the acceleration response history is the sum of the wavelet energies over time at
the scales &, and 24 that correspond to the first and half of the first natural frequency of the building under
consideration, respectively (i.e., & is the scale when pseudo-frequency of the daughter wavelet is equivalent to
the first natural frequency of undamaged state). The DSF values range between O (representing no structural
damage) and 1 (representing severe structural damage) as suggested in [21].

2.2 Application of wavelet-based DSFs to experimental data

The use of wavelet-based DSFs as structural damage indicators is validated with data from three large-scale
shake table experiments [24-28]. In these tests, the seismic behavior of the steel frame buildings is well
documented from minor damage through the occurrence of structural collapse. Figure 1 shows one of the three
case studies utilized for this purpose. It is a full-scale four-story steel frame building with MRFs tested at the E-
Defense shake table facility. The steel MRFs were designed in accordance with the Japanese standards [29, 30].
The three components (two horizontal and one vertical) of the JR Takatori ground motion recorded during the
1995 Kobe earthquake was simultaneously applied as an input to the shake table. The test structure experienced
three seismic intensities prior to structural collapse including 0.2, 0.4, 0.6 of the unscaled JR Takatori record.
Finally, at 1.0 of the original JR Takatori record the building collapsed after about 7 seconds of ground motion
shaking. Details of the test results of the test structure can be found in [24, 27, 28].

Figure 2 illustrates the wavelet-based DSF values of the four-story building with respect to the seismic
intensity in the two principal loading directions (i.e., X- and Y-directions). In the same figure, the additional
vertical axis illustrates the maximum story drift ratio (SDR) with respect to the seismic intensity. From Fig. 2(a),
the difference of wavelet-based DSFs between the 20% and 40% seismic intensities are minor. This is due to the
fact that the test structure remained elastic during the 20% JR Takatori record and experienced minor yielding in
its first story columns during the 40% and 60% scaled intensities (e.g., maximum SDR in the X-direction was
1.01% at the second story during 40% motion). From Fig. 2, it is interesting to note that the DSFs between the
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60% and 100% seismic intensities drastically change in both loading directions. During the 100% of the
unscaled JR Takatori record, the test structure collapsed with a first story sidesway mechanism (i.e., 19% SDR)
before it rested on the safeguard system shown in Fig. 1(a). From Fig. 2, the wavelet-based DSF increases while
the SDR demands that the test structure experiences increase. Therefore, the wavelet-based DSF is strongly
correlated with peak SDRs along the height of the four-story building. This is consistent with earlier findings as
discussed in [20, 21]. Similar findings hold true for the rest of the shake table experiments that were investigated
[25, 26]. It was also found that wavelet-based DSFs are well-correlated with peak floor absolute accelerations
(PFAs) and residual SDRs along the height of the steel frame buildings that were evaluated.
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Fig. 1 — Full-scale collapse test of a four-story steel frame building with MRFs (adopted from [24])
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Fig. 2 — Wavelet-based DSFs for four-story steel frame building at E-Defense facility

3. Proposed method for simplified assessment of steel frame buildings with MRFs

In order to propose an approximate method for simplified assessment of steel frame buildings with MRFs, we
developed a database of inelastic building seismic responses obtained from NRHA. Based on results the
relationship between the story-based EDPs in the database and the wavelet-based DSFs is established. The
approximate method is developed based on stepwise multivariate linear regression analysis. Story-based EDPs
are predicted within few minutes based on the respective building height, the ground motion intensity and the
wavelet-based DSF that is computed based on the recorded absolute acceleration response history at the building
roof. Therefore, the use of a detailed nonlinear building model is not required.

3.1 Database development

In order to populate the data of the best-suited damage indicators (i.e., wavelet-based DSFs), data from archetype
building collapse simulations are utilized. The archetypes range from 2 to 20 stories and their steel MRFs are
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designed for three strong-column/weak-beam (SCWB) ratios of 1.0 (code-based design), 1.5 and 2.0. The design
and seismic behavior of these buildings has been discussed in detail in [31, 32]. Figure 3 illustrates a plan view
and elevation of a representative four-story steel frame building with perimeter MRFs. The best-suited damage
indicators are used for the development of empirical equations for the computation of story-based EDPs without
the use of detailed nonlinear building models.

Two-Dimensional (2-D) analytical model representations of the east-west (E-W) bare MRFs (see Fig. 3)
are developed in the Open System for Earthquake Engineering Simulation (OPENSEES) Platform [33]. The MRF
steel beams and columns are modeled with elastic elements and concentrated plasticity flexural hinges at their
ends. The phenomenological deterioration model that was developed by Ibarra et al. [34] and further refined and
calibrated by Lignos and Krawinkler [35], is utilized for this purpose. To represent the hysteretic behavior of a
beam-to-column joint panel zone, a parallelogram model is used as discussed in [36]. Second order effects (i.e.,
P-Delta effects) are considered in the analytical model.

Note: Seismic Design Parameters
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Fig. 3 —Typical archetype steel frame buildings: (a) plan view; and (b) elevation of the four-story steel MRF

Multiple NRHA [i.e., incremental dynamic analysis (IDA) [4] are performed based on a suite of ground
motions with large moment-magnitude, 6.5 < M,, <7 and short closest-to-fault-rupture distance, 13 km < R, <
40 km (LMSR-N set) compiled by Medina and Krawinkler [37]. Different story-based EDPs of interest such as
peak SDRs, residual SDRs, and PFAs are obtained for each ground motion over a wide range of seismic
intensities. The wavelet-based DSFs are determined from the absolute acceleration response histories recorded at
the roof of each archetype as discussed in Section 2. The computed DSFs are then used as predictors together
with minimal geometric parameters that can be easily retrieved from the building under consideration.

3.2 Proposed empirical equations for rapid earthquake damage assessment

Multivariate linear regression analysis is employed in order to estimate the story-based EDPs along the height of
steel frame buildings based on the database of building responses discussed in Section 3.1. Based on the
stepwise multivariate regression analysis approach [38], statistically significant predictor variables are included
in the empirical equations. Equation (4) represents the general form of the empirical equations for estimating
median EDPs of interest,

IN(EDR) = 4, + £,In(IM)+ B, In(DSF ) + B, (h, /H) + B, (h /H)’ + B (h,/H)’ + B, (SCWB)+ 5, (N) +& (4)
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in which, p; are the regression constants; ¢ is the random error; EDP; are the peak SDRs, residual SDRs and
PFAs at each level i; the seismic intensity measures of the ground motion IMs are the S,,, and PGA for estimates
of peak SDRs and residual SDRs, and PFAs, respectively; the wavelet-based DSF is determined from the
absolute acceleration response history recorded at the roof of a building; hy is the height above the base of the
building to floor level x; H is the total building height above the ground; SCWB is the strong-column/weak-beam
ratio determined by the year of building construction; and N is the number of stories of the building under
consideration. The range of applicability of Eq. (4) for the estimation of EDPs is: 0.02 < S,,/g < 2.0; 0.05 <
PGA/g < 8.0; 0 < DSF < 0.85; 0.13 < h,/H < 1.0; 1.0 < SCWB < 2.0; and 2 < N < 20. It was found that the
average spectral acceleration S,,4 proposed by Eads et al. [39, 40] provides better estimates of peak SDRs and
residual SDRs compared to other IMs that were examined. Similarly, the peak ground acceleration (PGA)
provides better estimates for PFAs compared to other IMs that were considered. Note that the FEMA P-58
simplified approach [2] utilizes the same IM for computing PFAs.

To treat the statistical error and uncertainty in the regression model, t- and F-statistics are performed at a
5% significance level. The estimated values of the regression coefficients are summarized in Tables 1 and 2,
along with the coefficient of determination R?, the standard deviation &}, and the coefficient of variance (COV),
for buildings with less than 8-stories and buildings with 9 to 20 stories, respectively.

Table 1 — Regression coefficients for story drift ratio, peak absolute floor acceleration, and residual story drift
ratio for steel frame buildings with less than 8 stories

EDPs Po P B P P Ps Ps B IM
1.52 0.72 0.04 1.41 -1.23 | -0.08 0.00 -0.02 Savg
Peak SDR
R?=0.682, a), = 0. 366, COV=0.141
0.33 0.47 0.16 -0.11 0.00 0.00 0.06 -0.01 PGA
PFA
R?=0.691, g), = 0.271, COV=0.204
0.33 0.55 0.05 -0.18 0.00 0.00 -0.11 0.03 Savg
Residual SDR
R?=0. 361, ¢}, = 0.563, COV=0.901

Table 2 — Regression coefficients for story drift ratio, peak absolute floor acceleration, and residual story drift
ratio for steel frame buildings buildings with 9 to 20 stories

EDPs Po 1 P P P Ps Ps P IM
1.40 0.60 0.04 3.76 | =750 | 4.05 | -0.08 | -0.005 | Say
Peak SDR
R?=0.563, oy, = 0.392, COV=0.173
0.56 0.51 0.16 | -1.03 | -0.84 | 0.00 0.02 | -0.005| PGA
PFA
R?=0.716, oy, = 0.270, COV=0.192
0.354 | 0.416 | 0.012 | 0.750 | -1.01 | 0.00 | -0.137 | 0.009 Savg
Residual SDR
R?=0. 219, ¢}, = 0.582, COV=0.881

3.3 Evaluation of proposed method for predicting EDPs in steel frame buildings with MRFs

In this section, the efficiency of the proposed empirical equations in predicting story-based EDPs in steel frame
buildings with MRFs is evaluated with respect to results obtained from rigorous NRHA. An 8-story steel frame
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building with MRFs designed in downtown Los Angeles (33.996°N, 118.162°W) is used as a case study. The
building is subjected to the far-field set of 44 ground motions from FEMA P695 [41]. For comparison purposes
the simplified procedure summarized in FEMA P-58 [2] is also considered. The comparison is done for three
discrete levels of intensity of interest to the engineering profession: namely, (a) service-level earthquake (SLE,
seismic hazard level of 50% probability of exceedance in 50 years); (b) design-basis earthquake (DBE, 10%
probability of exceedance in 50 years); and (c) maximum considered earthquake (MCE, 2% probability of
exceedance in 50 years) as defined for the design location of interest.

Figure 4 illustrates the predicted peak SDRs along the height of the 8-story steel frame building based on
the proposed equations in comparison with the median response based on NRHA for all three levels of seismic
intensity of interest. In the same figure, we have superimposed the predicted median peak SDRs based on the
FEMA P-58 simplified procedure [2]. On the basis of the FEMA P-58 procedure, we determined the median
SDR by using (a) a nonlinear building model; (b) an elastic analysis based on a first-mode lateral force
distribution; and (c) an estimate of the building’s lateral yield strength by conducting a nonlinear static analysis
based on a first mode lateral load pattern. From Fig. 4, it is evident that the proposed predictive equations
provide reasonable estimates of peak SDRs along the height of the building regardless of the seismic intensity.
Note that the only input information that is required is the building height, the employed SCWB ratio and the
computed DSF based on the absolute acceleration response history at the roof of the 8-story building. The
FEMA P-58 simplified procedure provides slightly better estimates of median SDR responses compared to that
of the proposed method for the SLE and DBE seismic intensities [see Figs. 4(a) and 4(b)]. This is mainly due to
the fact that this procedure uses a detailed analytical model that appropriately represents the distribution of mass
and stiffness along the height of the building. The building’s mode shape and lateral yield strength is also
utilized. From Fig. 4c, the FEMA P-58 simplified approach significantly overestimates the peak SDRs in the
upper stories of the 8-story building at the MCE intensity. This is due to the fact that this approach is not
applicable when SDRs exceed 4 times the corresponding yield drift ratio and excessive deterioration in strength
and stiffness of structural components occurs. Based on Fig. 4(c), the proposed method predicts fairly well the
EDPs of interest.

‘—D— NRHA —0O— Proposed Method —s¢— FEMA P'53‘

RF RF _ RF _
8 8 8 |
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—_ 67 — 67 —_ 67
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0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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Fig. 4 — Predicted versus simulated peak story drift ratios along the height of the 8-story steel frame building
with SCWB > 1.0

The predicted median PFAs along the height of the 8-story building are shown in Fig. 5 for the three
levels of seismic intensity of interest based on the proposed method and the FEMA P-58 simplified approach.
Superimposed in the same figure is the median response based on results from NRHA. From this figure, it is
found that the proposed method provides reasonable PFA estimates along the height of the building for moderate
seismic intensities (i.e., SLE, DBE). For seismic intensities with low probability of occurrence [see Fig. 5(c)]
even though the proposed method captures the saturation of PFAs due to the nonlinear response of the building,
it underestimates PFAs by approximate 15%, on average, compared to NRHA.. Similar accuracy is achieved with
the FEMA P-58 simplified approach.

Figure 6 compares the predicted residual SDRs along the height of the 8-story building based on the
proposed method and the FEMA P-58 simplified approach for the three seismic intensities of interest. In the
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same figure we have superimposed the median response based on NRHA. From Fig. 6, the proposed method
tends to slightly overestimate the residual SDRs around the mid-height of the building. The FEMA P-58
simplified approach tends to underestimate the residual SDRs at the bottom stories of the building [see Figs. 6(a)
and (b)]. This is generally not the case for higher seismic intensities associated with MCE [see Fig. 6(c)].
Previous research has identified that residual story drifts are highly variable and very sensitive to the earthquake
magnitude, distance to the source range, the adopted component hysteretic behavior as well as the analytical
model representations of a building [17, 42-44]. For the aforementioned reasons, a lower/upper bound analysis
can be employed based on the 16"/84™ percentile of the predicted values based on the proposed method. For this
reason, the COV values summarized in Tables 1 and 2 can be utilized.
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Fig. 5 — Predicted versus simulated peak floor absolute acceleration for 8-story steel frame building with SCWB
of 1.0
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Fig. 6 — Predicted versus simulated residual drift ratio for 8-story steel frame building with SCWB of 1.0

4. Application of simplified assessment methodology in instrumented steel frame
buildings

4.1 Case study instrumented building

The proposed method for rapid earthquake assessment of steel frame buildings with MRFs is evaluated with the
use of recorded data from an instrumented steel building located in California. This building experienced the
1994 Northridge earthquake. The selected building is the 15-story Government steel frame office building
(Station Number: CSMIP 24569) located in Los Angeles, California (34.058°N, 118.250°W). The lateral load
resisting system of this building consists of steel MRFs. The building was designed in 1961. Therefore, capacity
design principles did not apply in this case. A concrete shear wall exists at the basement level. Fifteen
accelerometers were placed at four levels along the height of this building that recorded the building response
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during the earthquake. The recorded data is retrieved from the Center for Engineering Strong Motion Data
(CESMD) operated by the California Department of Conservation’s Strong Motion Instrumentation Program
(CSMIP) in cooperation with the US Geological Survey (USGS).

4.2 Prediction of engineering demand parameters

To determine the wavelet-based DSFs to be used in the proposed equations, the first natural frequency f; of the
building is identified in its two orthogonal loading directions based on the base motion and output absolute
acceleration response histories recorded at the roof of the building during the earthquake. The numerical
algorithms for subspace state space system identification (N4SID) technique [45] is used for this purpose. The
identified frequencies are summarized in Table 3. In case that the response history at a different floor is only
available, the output-only system identification approach developed by Lignos and Miranda [46] can be
employed to compute the base and roof motions needed for the proposed method discussed in this paper.

Table 3 — System identification for 15-story instrumented steel frame office building in Los Angeles

Loading direction | Natural frequency f; (Hz) | Damping ratio, &; (%0)

North-South 0.34 2.2

East-West 0.32 3.4

N-S O Recorded Data (N-S)
E-W o Recorded Data (E-W)

1 1 1_
< 08 < 08 <. 08
= i _C—- | S—- |
E”O'Gi -%0'67, E”O'Gi
T 04 T 04 T 04
£ ] £ 1 S 1
5 0.2 | 5 0.2 5 0.2
Z Z Z o
R SUSSUSSUSSUSSE R SUSSUSSUSSUISSR 07
0 03 06 09 12 15 0 01 02 03 04 05 0 02 04 06 08 1
Peak SDR (%) Residual SDR (%) PFA (9)
(@ (b) (c)

Fig. 7 — Predicted EDPs for Los Angeles — 15-story Government office building (CSMIP 24569)

The estimated story-based EDPs of interest along the height of the 15-story building are shown in Fig. 7
for both loading directions [North-South (noted as N-S) and East-West (noted as E-W). These EDPs are
computed within few minutes based on Eq. (4) and Table 2. The wavelet-based DSF is determined from the
recorded absolute acceleration response history at the roof of the building. Other than that, the total height of the
building is only used for such prediction. In Fig. 7(c) the recorded peak floor absolute accelerations at three floor
levels have been superimposed for comparison purposes with the proposed method. From the same figure, it is
found that the proposed method provides accurate estimates of PFAs for the instrumented building of interest.
From Figs. 7(a) and (b), the proposed method predicts that the peak SDR and residual SDR along the height of
the same building is 1.1% and 0.3%, respectively. This occurs around the mid-height of the building for both
loading directions of interest. Therefore, the steel beams of the building barely yielded and therefore the building
is deemed to be lightly damaged. In this case, the FEMA P-58 simplified approach cannot be utilized because the
building geometry as well as material properties of the respective structural components is not known.

5. Summary and conclusions

This paper proposed an approximate method for estimating story-based EDPs such as peak story drift ratios
(SDRs), peak floor absolute accelerations (PFAs) and residual SDRs along the height of steel frame buildings
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with moment-resisting frames (MRFs) in the aftermath of an earthquake. The proposed method utilizes a
wavelet-based damage sensitive feature (DSF) based on concepts from structural health monitoring (SHM). The
method does not require the use of a detailed analytical model of a building in order to compute its response
during an earthquake. Two case studies are used for illustration of the potential use of such method for rapid-
earthquake assessment of instrumented steel frame buildings with MRFs. The main findings of the paper are
summarized as follows:

o Wavelet-based DSFs are able to trace changes in building seismic response due to structural damage
without the use of detailed analytical models. This was verified based on data from large-scale shake
table experiments that evaluated the dynamic response of steel frame buildings with steel MRFs from
the onset of damage through the occurrence of structural collapse.

e The proposed method provides reasonable estimates of peak SDRs and PFAs at various seismic
intensities of interest in comparison with results from nonlinear response history analysis (NRHA) of an
8-story steel frame building subjected to a set of 44 ground motion records.

e The efficiency of the approximate method in predicting story-based EDPs in steel frame buildings with
MRFs is compared with the FEMA P-58 simplified approach [2]. It is found that even though the FEMA
P-58 approach utilizes a detailed numerical model representation of the building of interest, it only
provides slightly better estimates of peak SDRs and PFAs for moderate seismic events compared to the
proposed method presented in this paper. For seismic events with low-probability of occurrence, the
proposed method provides EDP estimates much closer to reality than the FEMA P-58 approach.

e The proposed method predicts reasonably well the residual SDRs of the case study building for
moderate seismic events compared to the FEMA P-58 simplified approach. Large discrepancies are
observed between predicted and simulated median residual SDR at seismic intensities with low-
probabilities of occurrence. In this case, lower/upper bound analysis may be considered.

e The potential use of the proposed method for rapid seismic assessment of structural damage in steel
frame buildings with MRFs is illustrated with the utilization of recorded data of an instrumented steel
frame building that experienced the 1994 Northridge. The building seismic response is predicted within
few minutes (near real-time) without the use of a detailed numerical model.
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