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Abstract 
Most ground motion prediction equations (GMPEs) require finite-fault distance metrics, such as the distance to the surface 
projection of the rupture (RJB) or the closest distance to the rupture plane (RRUP). There are a number of situations in which 
GMPEs are used where it is either necessary or advantageous to compute the finite-fault distances from point-source 
distances, such as hypocentral (RHYP) or epicentral distances (REPI). For ShakeMap [1], it is necessary to provide an estimate 
of the shaking levels for events without finite fault models, and before finite faults are available for events that eventually 
do have finite fault models. In probabilistic seismic hazard analysis (PSHA), it is often convenient to use point-source 
distances for gridded seismicity sources, particularly if a preferred orientation is unknown. This avoids the computationally 
cumbersome task of computing fault-based distances for virtual faults across all strikes for each source. As recommended 
by Bommer and Akkar [2], it would be ideal if GMPE developers provided coefficients for point-source distances as an 
alternative to fault-based distances (as done by Akkar et al. [3]), but these are rarely available. In the 2008 version of the 
U.S. national seismic hazard model [4], equations were derived for the average finite fault distance as a function of REPI for 
vertical faults as a function of earthquake magnitude. Here, we follow the same method but extend it to allow for dipping 
faults. Since the dip is also not known in many cases, we provide correction factors that assume an average dip associated 
with each mechanism. Additionally, we derive adjustment factors for the inter- and intra-event standard deviations of 
GMPEs that reflect the added uncertainty in the ground motion estimation when point-source distances are used to estimate 
the finite-fault distances. 
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1. Introduction 
In ground motion prediction equations (GMPEs), the decay of the ground motion intensity measure (e.g., peak 
ground motion, response spectra) with distance is most commonly taken into account with definitions of distance 
from the ruptured area (i.e., the portion of the fault where coseismic slip exceeds some threshold). In this article, 
we refer to this class of distance measures as finite-fault distances, and two of the most commonly used 
examples are the Joyner-Boore distance (the horizontal distance to the surface projection of the rupture [5]; 𝑅JB) 
and the rupture distance (the closest distance to the rupture; 𝑅RUP). A finite fault model often does not exist, 
however, and the only available distances are point-source distances, such as hypocentral (𝑅HYP) or epicentral 
distance (𝑅EPI). There are a number of situations in which GMPEs are used where it is either necessary or 
advantageous to estimate the finite-fault distances from a point-source distance. For ShakeMap, it is necessary to 
provide an estimate of the shaking levels before a finite fault is available, although this is updated when (and if) 
a finite fault model becomes available. In a probabilistic seismic hazard analysis (PSHA), it is often convenient 
to use point-source distances for gridded seismicity, particularly if a preferred rupture orientation is unknown, as 
is done in the U.S. Geological Survey (USGS) National Seismic Hazard Models (NSHMs) [4]. This approach 
avoids the computationally cumbersome task of computing fault-based distances for virtual faults across all 
possible strikes and dips for each source. Monelli et al. [6] performed PSHA sensitivity tests and showed that the 
difference between the use of finite fault distances vs point-source distances can result in differences in the 
design ground motions by as much as 58%. 

Ideally, as recommended by Bommer and Akkar [2], GMPE developers would provide a separate set of 
regression coefficients for the use of point-source distances as an alternative to fault-based distances (as done by 
Akkar et al. [3]), but such models are rarely available. An alternative is to convert point-source distances to 
median fault-based distances using equations such as those developed in the Electric Power Research Institute 
(EPRI) report on ground motion models for the central and eastern United States (CEUS) [7]. These equations 
were based on ground motion simulations for vertical strike-slip faults and dipping reverse faults (where the dip 
angle is fixed at 40°). The EPRI approach determined point-source distance adjustments that produced the 
median (simulated) ground motions from a specific set of GMPE functional forms. The report provides 
equations for adjusting the uncertainty of the GMPE predictions to account for the additional uncertainty of the 
unknown fault distance. Around the same time, Scherbaum et al. [8] developed a methodology to convert from 
point-source distances to finite-fault distances using simulations of rupture and observational statistics from 
which parametric models of distance residuals were derived. Chiou and Youngs [9] (Appendix B) followed a 
similar approach to fill in the finite fault distances for events without finite fault models in their analysis.  

The USGS NSHMs (see Petersen et al. [4]; Appendix C) use conversion factors based on numerical 
integration of a vertical fault rotated through non-redundant strike angles, where the length of the rupture is 
computed from the earthquake magnitude using the empirical relationships between magnitude and rupture 
length developed by Wells and Coppersmith [10] (hereafter termed WC94) equations. However, the NSHMs do 
not propagate the additional uncertainty introduced by the unknown rupture geometry. Bommer et al. [11] 
developed distance conversion equations by randomly sampling epicenter/receiver locations and fault rupture 
lengths, also assuming a vertical fault and the WC94 magnitude-length relationships.  

In this article, we develop conversion equations that extend the above methodologies. Rather than 
randomizing or simulating fault and site parameters, we numerically integrate the conversion factors in a manner 
similar to the method described in Appendix C of Petersen et al. [4]. However, we extend the integration to 
account for variability in dip, mechanism, and rupture area. The result is a set of generic distance and uncertainty 
conversion factors that can be applied to existing GMPEs under various circumstances. We develop a series of 
distance conversion relationships (and the resulting additional uncertainty in the estimation of the finite-fault 
distances) for common situations, but we also provide software [12] where the assumptions can be specified for 
new situations. We then demonstrate how to incorporate these equations into a GMPE.  
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2. Seismological Constraints 
The relationship between point-source and finite-fault distances depends on a number of factors, such as dip, 
rupture area and aspect ratio, and the depth range of the seismogenic zone. In this section, we describe the 
assumptions that we have made to constrain these parameters. Since these parameters are often unknown, we 
represent them with probability distributions. The assumptions are summarized in Table 1 and described in more 
detail below.  

Table 1 – Distance conversion assumptions for various scenarios. 

Description M-A 
Reference 

Mechanism Aspect 
ratio 

Seis. range 
(km) 

Dip (km) 

Default [10] All 1.7 0-20 U(0, 90) 

ACR N [10] N 1.7 0-20 U(40, 60) 

ACR R [10] R 1.7 0-20 U(35, 50) 

ACR SS [10] SS 1.7 0-20 U(75, 90) 

SCR N [13] N 1.0 0-15 U(40, 60) 

SCR R [13] R 1.0 0-15 U(30, 60) 

SCR SS [13] SS 1.0 0-15 U(60, 90) 

M-A: magnitude-area relationship.  
Seis. Range: Seismogenic zone depth range.  
U(a, b): Uniformly distributed from a to b.  
ACR; SCR: Active crustal region; stable continental region 
N, R, SS: Normal, reverse, strike slip faulting. 

 

For rupture area, we use magnitude-area relationships. These relationships are based on linear regression 
of the logarithm of the rupture area with magnitude. Thus, for a given magnitude, the mean and standard 
deviation of the logarithm of the rupture area have been computed. However, the magnitude area relationship 
varies between tectonic environments. For active crustal regions (ACRs) we use the WC94 equations; for stable 
continental regions (SCRs) we use the equation developed by Somerville [13]. The WC94 equations vary by 
mechanism, and provide an ‘all’ category for when the mechanism is unknown; in contrast, Somerville [13] does 
not provide different coefficients for different mechanisms. If the mechanism is known, we also use it to 
constrain the probability distribution of dip. For an unknown mechanism, we assume the dip is uniformly 
distributed between zero and 90 degrees. Note that a larger minimum value for dip might be more reasonable for 
this general case. Adjustments like this can easily be accommodated since the source code for these calculations 
is freely available. For ACRs, we inspected the range of dip angles by mechanism in the NGA-W2 database [14, 
15] and selected approximate representative ranges, as summarized in Table 1. For SCRs, we used the range in 
dips for each mechanism reported in the CEUS-SSC report [16]. Similarly, we base the seismogenic zone depth 
range for SCRs on the CEUS-SSC report [16]. For ACRs, we set the seismogenic zone depth range to 0-20 km 
based on the hypocentral depth range seen in the NGA-W2 database [15]. Note that we also should assume a 
probability distribution for the aspect ratio (𝐴𝑅) (i.e., the ratio of rupture length to rupture width). However, for 
simplicity, we assume a fixed value for 𝐴𝑅. For ACRs, we used an 𝐴𝑅 of 1.7, which is the average aspect ratio 
in the NGA-W2 database for events with magnitude less than 6.7. This threshold magnitude was selected to 
avoid events that are width-limited by the seismogenic zone. For SCRs, following the CEUS-SSC report [16] we 
used an 𝐴𝑅 of 1.0. In both cases, the 𝐴𝑅 is adjusted as a function of rupture area and dip angle to ensure that the 
seismogenic zone depth range is not violated. If the reader finds these choices unsatisfactory for specific 
applications, we provide the software that we use for our calculation [12], which allows the selection of other 
assumptions and could easily be modified to include a probability distribution for 𝐴𝑅. 
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3. Joyner-Boore Distance 
In Appendix C of Petersen et al. [4], S. Harmsen derived equations for the mean RJB (𝑅JB) of a vertical fault as a 
function of epicentral distance (𝑅EPI) and earthquake magnitude (M), using the WC94 empirical relationship 
between rupture length (𝐿) and M. Although written in a different form/notation, Harmsen essentially solved the 
following integral 

 𝑅JB 𝑅EPI, 𝐌 = 	 𝑅JB 𝑅EPI, 𝜃 𝑃(𝜃)𝑑𝜃
-.

/
 (1) 

where 𝜃 is the angle between the vector from epicenter (𝐸) to site (𝑆) and the normal to the fault strike. Here, we 
follow the same method but extend it to allow for dipping faults, position of the hypocenter (𝐻) on the rupture 
plane, and uncertainty in the fault dimensions. Since we allow the faults to dip, we need to also compute the fault 
width (𝑊). Thus, rather than using the WC94 equations for 𝐿 = 𝑓(𝐌), we use their equations for computing the 
rupture area (𝐴) from M and then compute 𝐿 and 𝑊 from 𝐴 and 𝐴𝑅. Harmsen assumed that 𝐻 is located in the 
center of the fault (allowing for simplification due to the symmetry of the problem); however, we assume that 
the along-strike distance (𝑦) and along-width distance (𝑥) are uniformly distributed. Fig. 1 illustrates the 
geometry of our formulation. 

 
Fig. 1 – Schematic illustration of epicenter-to-site geometry. The heavy dashed line represents the 
surface projection of the rupture plane. The rupture plane has (along-strike) length L, (down-dip) 
width W, and dip 𝛿.	
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Our generalization for the average 𝑅JB for an unknown strike and location of the hypocenter on the fault 
plane is 

 
𝑅JB 𝑅EPI, 𝐌 =

	
𝑅JB

-.

/

89

/

:

/

./-

/

<

=<
𝑅EPI, 𝐌, 𝜃, 𝑥, 𝑦, 𝛿, 𝜖

	 ×	𝑃 𝜃 𝑃 𝑥 𝑃 𝑦 𝑃 𝛿 𝑃 𝜖 	𝑑𝜃	𝑑𝑥	𝑑𝑦	𝑑𝛿	𝑑𝜖
 (2) 

where 𝑊@ = 𝑊 cos(𝛿) is the width of the surface projection of the fault, 𝛿 is fault dip, and 𝜖 is the quantile of 
log	(𝐴), which is assumed to be normally distributed with mean and standard deviations computed from 𝐌. To 
evaluate equation 2, we must also make assumptions about the probability distributions of 𝜃 (uniform from zero 
to 2𝜋), 𝑥 (uniform from zero and 𝑊@), 𝑦 (uniform from zero and 𝐿), 𝛿 (uniform from zero to 𝜋/2), and a 
truncation level for 𝜖 (±3 standard deviations). We evaluate equation 2 with the trapezoidal method of numerical 
integration. The probability distributions of the different variables can be adjusted for different conditions (e.g., 
focal mechanism, tectonic environment) or even be set to constant values for a specific event or for illustrative 

 
Fig. 2 – 𝑅HIJ-to-𝑅KLM ratio (left) and VarQ𝑅HIJ(𝑅KLM, 𝐌)R (right) curves for strike-slip (top), normal (middle), 
and reverse mechanisms (bottom), assuming average dips of 90°, 50°, and 40°, respectively. 
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purposes.  

Following Kaklamanos et al. [17], we assume constant dips of 90°, 50°, and 40°, for strike slip, normal, 
and reverse mechanisms, respectively. Fig. 2 gives the ratio of 𝑅JB-to-𝑅EPI for each mechanism for M 4 to M 9. 
These curves use the default assumptions listed in Table 1, except that the dip angle is fixed at a constant value 
for this illustration. The curves for strike-slip are roughly equivalent to those by Harmsen (in [4]). The ratio does 
not approach zero at small 𝑅EPI because the surface projection of the fault has zero width for vertical faults, and 
so 𝑃(𝑅JB = 0) = 0. The differences between the curves for the different mechanisms are largely determined by 
the assumed mean dips; as the dip decreases, the width of the surface projection of the fault increases, decreasing 
𝑅JB.  

Generally, we cannot constrain 𝛿 as in Fig. 2. In the absence of additional information about the 
earthquake, we compute 𝑅JB and its variance [Var 𝑅JB ] with the default assumptions in Table 1 (we omit the 
equations for the Var 𝑅JB(𝑅EPI, 𝐌)  since they are just a small variation on the equation for the mean). However, 
we generally know the tectonic environment and focal mechanism, which allows us to constrain some of these 
parameters further, as summarized in Table 1. We plot the 𝑅JB-to-𝑅EPI ratio and Var 𝑅JB(𝑅EPI, 𝐌)  curves in 
Fig. 3 for three different sets of assumptions in Table 1. The three examples are for the default assumptions, for a 
strike-slip mechanism in active crustal regions (ACR), and for a strike-slip mechanism in stable continental 

 
Fig. 3 – 𝑅HJB-to-𝑅EPI ratio (left) and Var[𝑅HJB(𝑅EPI , 𝐌)] (right) curves for the default assumptions in 
Table 1 (top), an ACR strike slip event (middle), and SCR reverse event (bottom).	
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regions (SCR); the mechanisms were selected to be the most common mechanism in the respective tectonic 
environments.  

4. Rupture Distance 
In order to compute 𝑅RUP, the depth to the top of the rupture (𝑍TOR) is also required. Thus, we must add an 
integral across possible values of 𝑍TOR to equation 2 as follows:  

 
𝑅RUP 𝑅EPI, 𝐌 =

	
𝑅RUP

-.

/

89

/

:

/

./-

/

<

=<

W

/
𝑅EPI, 𝐌, 𝜃, 𝑥, 𝑦, 𝛿, 𝜖, 𝑍TOR

	 ×	𝑃 𝜃 𝑃 𝑥 𝑃 𝑦 𝑃 𝛿 𝑃 𝜖 𝑃 𝑍TOR 	𝑑𝜃	𝑑𝑥	𝑑𝑦	𝑑𝛿	𝑑𝜖	𝑑𝑍TOR

 (3) 

where 𝑍TOR is assumed to be uniformly distributed between zero and 𝑧, and 𝑧 is constrained by fault width, dip, 
and the seismogenic zone depth range at each integration step. Fig. 4 plots the same information for the same set 
of assumptions as Fig. 3; note that unlike the 𝑅JB-to-𝑅EPI ratio, the 𝑅RUP-to-𝑅EPI is greater than 1 for small 
values of 𝑅EPI; this aspect of the curves is controlled by the distribution of 𝑍TOR. Since 𝑧 will be smaller for 

 
Fig. 4 – 𝑅HRUP-to-𝑅KLM ratio (left) and Var[𝑅HRUP(𝑅EPI , 𝐌)] (right) curves for the default assumptions in Table 
1 (top), an ACR strike slip event (middle), and SCR reverse event (bottom). 

	



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

8	

larger faults, at small values of 𝑅EPI the maximum value of 𝑅RUP tends to be smaller for larger magnitudes.  

5. GMPE Standard Deviations 
Using 𝑅 (meaning 𝑅JB or 𝑅RUP) in place of 𝑅 (meaning 𝑅JB or 𝑅RUP) in a GMPE increases the uncertainty of the 
output. To account for this, we adjust the GMPE standard deviation using standard error propagation techniques 
[18] to be  

 𝜎Z = 𝜎[- + ∆𝜎-	, (4) 

and  

 ∆𝜎- =
𝜕(ln 𝑌)
𝜕𝑅

-

Var 𝑅(𝐌) 	, (5) 

where ln 𝑌 is the natural logarithm of the response spectra predicted by the GMPE, and 𝜎[  is its total standard 
deviation predicted by the GMPE. In most cases, it will only be practical to compute the derivative of the GMPE 
in equation 5 numerically. But for this paper, we use the Boore et al. [19] GMPE, and its derivative with respect 
to 𝑅IJ can be found analytically to be  

 𝜕 (ln 𝑌)
𝜕𝑅ab

= 	
𝜕𝐹d
𝜕𝑅ab

∙ 1 + 	
𝑓-	 ∙ 	𝑃𝐺𝐴h
𝑓i + 	𝑃𝐺𝐴h

, (6) 

where 

 𝜕𝐹d
𝜕𝑅ab

= 	𝑅ab
1
𝑅-

𝑐k + 𝑐- 𝑀 − 𝑀hno +
1
𝑅
𝑐i + ∆𝑐i , (7) 

and 𝑃𝐺𝐴h (the 𝑃𝐺𝐴 predicted for rock) is derived from equation 1 of Boore et al. [19] using a 𝑉@i/ of 760 m/s. 
The constants 𝑐k, 𝑐-, 𝑐i, Δ𝑐i, and 𝑓i are given by Boore et al. [19] for the ground motion measure in question. R 
and 𝑓- are given by Boore et al. [19] equations 4 and 8, respectively. Fig. 5 shows the ∆𝜎 that we compute from 
equation 5 with the Boore et al. [19] GMPE and compares it to the analogous EPRI [7] equations. The EPRI 

 
Fig. 5 – ∆𝜎 computed from equation 5 using the Boore et al. [19] GMPE (left), and the analogous equations 
by EPRI [7] (right). 
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report provides different coefficients for different GMPE functional forms and for different oscillator periods. In 
Fig. 5, we used the coefficients for their F1 functional form and PGA. Note that our results are in general 
agreement in terms of the magnitude of the ∆𝜎 term; the minor differences result from different assumptions of 
the distribution of source parameters (e.g., dip) and in how the misfit function was defined in optimizing the 
distance adjustment factors (our factors are not dependent on a GMPE functional form).  

6. Evaluation and Interpolation 
We explored the possibility of approximating the ratio and variance curves such as those in Figs. 3 and 4 with 
simple parametric functions. However, the irregular shape of the curves makes it difficult to achieve an accurate 
approximation with few parameters. So rather than parametrically approximating the ratios, variances, and/or 
delta sigma values (which are GMPE-specific) we decided to retain as much precision as possible and tabulate 
these values directly. For each row in Table 1, we provide four tables: two for 𝑅JB and two for 𝑅RUP; for each of 
the distances, we provide a table of the mean finite fault distance to 𝑅KLM ratio and a table for the respective 
variances. The tables are arranged with rows for values of 𝑅KLM logarithmically spaced from 0.1 to 1000 km and 
the columns are for magnitudes from M 4 to 9 incremented by 0.25 magnitude units. An abridged example table 
is given in Table 2.  

Table 2 – Abridged example of tabulated values of 𝑅IJ-to-𝑅KLM ratios. 

𝑹𝐄𝐏𝐈 (km) M 4 M 4.25 M 4.5 M 4.75 M 5 
0.1 0.234821 0.194306 0.161197 0.135113 0.115207 

0.125893 0.272624 0.226096 0.187094 0.155453 0.130702 
0.158489 0.315243 0.262731 0.217688 0.180158 0.149952 
0.199526 0.362271 0.304161 0.253124 0.209575 0.173506 
0.251189 0.413028 0.35011 0.293356 0.243813 0.20178 
0.316228 0.466496 0.400042 0.338218 0.282854 0.234821 
0.398107 0.521417 0.452955 0.387248 0.326583 0.272624 
0.501187 0.57673 0.507611 0.439522 0.374658 0.315243 
0.630957 0.631557 0.562923 0.493841 0.426204 0.362271 
0.794328 0.684747 0.617962 0.549095 0.480128 0.413028 

1 0.734804 0.671643 0.604266 0.535253 0.466496 
1.258925 0.780243 0.722666 0.658395 0.590512 0.521417 
1.584893 0.819936 0.769406 0.710275 0.645034 0.57673 
1.995262 0.85361 0.810579 0.758214 0.697632 0.631557 
2.511886 0.881639 0.845742 0.800839 0.746672 0.684747 
3.162278 0.904683 0.875127 0.837512 0.790721 0.734804 
3.981072 0.923472 0.899349 0.868292 0.828912 0.780243 
5.011872 0.9387 0.919135 0.893738 0.861123 0.819936 
6.309573 0.950986 0.935192 0.914565 0.887838 0.85361 
7.943282 0.960864 0.94816 0.931491 0.909751 0.881639 

10 0.968786 0.958594 0.945175 0.927588 0.904683 
 

To evaluate the ratios/variances at an arbitrary 𝑅KLM and magnitude, we prefer to interpolate distance 
logarithmically and magnitude linearly. Additionally, we suggest that if one must extrapolate outside of the 
range in magnitude and distance for the tabulated values, then the nearest tabulated point should be used.  
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7. Discussion 
We have provided point-source distance adjustments to get approximations of finite fault distances for a handful 
of general tectonic environments. This method can be easily adjusted to allow for different distributions that 
would be more appropriate for more specific projects/regions. Note that a logical extension of this work is to 
avoid integrating across all azimuths by building tables of adjustment factors and sigma for a given magnitude, 
varying the angle between the strike and backazimuth of each site. This allows for better constraints on the 
orientation of the rupture when strike is known. Also, we have not yet addressed subduction zone earthquakes 
because we think that additional work is needed. In particular, it will be important to constrain the distributions 
differently for interface and intraslab events. For large interface events, it is probably important to make use of a 
model of subduction zone geometry (such as [20]) to derive correction factors that make use of distributions that 
are conditioned on the orientation of the slab model at the location of the earthquake.  

8. Conclusions 
We have provided a method for adjusting point source distances to get mean finite fault distances. This is 
particularly useful for applications like ShakeMap where we frequently must estimate the ground motions before 
a finite fault model is available. These types of adjustments are also useful for gridded seismicity in probabilistic 
seismic hazard analysis. Additionally, we were surprised to see significant differences between the mean finite 
fault distances and the point source distances extend to such small magnitudes. For example, we see that 𝑅JB is 
as much as 20% less than 𝑅EPI at distances as large as 30 km for a magnitude 6 earthquake. For this reason, we 
think that it would also be appropriate for GMPE developers to use this type of adjustment for records that are in 
their analysis but do not have a finite fault model.  
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