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Abstract 

Accounting for all possible failure modes in seismic design and construction of reinforced concrete shear walls is 
important to ensure that the expected seismic performance of the building structures is attained. Sliding is a shear 
wall failure mode that can occur at flexural cracks or at cold joints. For example, significant sliding was 
observed at a four-story reinforced concrete building tested on the E-Defense shaking table [1]. Whyte [2], 
Synge [3] and Luna [4] observed and examined sliding failure in their squat shear wall tests.  

In earthquake engineering, the sliding resistance on a crack in a reinforced concrete structural element is 
defined by simple equations in nearly all modern codes (EC8, ACI 318-1, fib-Model Code 2010). These 
equations have been developed for crack sizes occurring at serviceability performance levels and modified for 
use in seismic design. Large crack widths, which are common under earthquake loads, are not explicitly 
considered. 

This article presents a sliding resistance and deformation model for reinforced concrete shear walls. This 
model includes the interaction between the concrete and the reinforcement and complies with the equilibrium of 
forces and the compatibility of deformations at each point in the sliding process. At the core of the model is a 
plastic micro-model that characterises the interlocking process of the aggregate on an existing crack. Depending 
on the concrete strength, the compression stress, and the roughness of the crack surface, the force transferred 
across the crack is determined for any displacement and any crack width. The model is validated against a series 
of sliding tests on compact sliding specimens (see Fig.1).  

 

         

Fig.1 – Compact sliding specimen at 2 mm, 10 mm, and 50 mm displacement 
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1. Introduction 

 

Fig.2 –Sliding of shear walls 

The deformation behaviour of a cyclically loaded wall is shown in Fig.2. The hatched section of the wall is 
responsible for the sliding behaviour in the 2nd half-cycle. In the 1st half-cycle this section was located in the 
tension zone of the wall where a crack may open at a cold joint or at the section between wall and foundation. In 
the 2nd half-cycle, such crack may not fully close; nonetheless, the horizontal shear force is transferred across 
such open crack in the compression zone of the wall. This load deformation behaviour of the compression zone 
that was cracked in flexure earlier in the response history is responsible for the sliding behaviour of the wall. 

2. Sliding model 

 

Fig.3 –Sliding model in the compression zone of a wall (Fig. 2) 

A sliding model, comprised of an aggregate interlock model and a deflection model of the reinforcement, 
is developed to predict the sliding behaviour of shear walls under horizontal cyclic loads. The model describes 
the mechanical behaviour of reinforced concrete at a horizontal crack (see Fig.3). Aggregate interlock is 
modelled with an ideal plastic micro-model. The aggregate interlock effect depends on the crack width, the 
concrete strength, and the roughness of the crack surface. To describe the deformation behaviour of the 
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reinforcement, a deflection model is proposed. This model allows bending and axial deformation of the 
reinforcement at the crack. Both models are compatible in displacements and produce vertical and horizontal 
reaction forces at the crack. For a given sliding displacement, the model calculates the crack width needed to 
accomplish the equilibrium of forces and the compatibility of deformations. 

2.1 Aggregate interlock model of cracked concrete 

2.1.1 Mechanical approach 

The aggregate interlock model is based on the model from Walraven [5], where sections of aggregate grains are 
assumed to be circular. The crack width is w, and the diameter of each aggregate, i, is di. The tensile strength is 
low at the surface between the aggregate and the cement matrix, so tension forces can induce cracks in the 
concrete. These cracks develop along the surfaces of the aggregate grains. 

When two pieces of concrete, separated by a horizontal crack, are loaded by shear forces, sliding 
displacements, uslid, are assumed to occur. A portion of the horizontal crack is geometrically defined in Fig.4. 
The grey-shaped circle represents the cross section of an aggregate grain, assumed to be a perfect sphere, and the 
hatched area shows the cement matrix. To reach this state of displacement, parts of the cement matrix must be 
plastically deformed (crushed), while the geometry of the aggregate remains unchanged. The stress acting at the 
contact surface between the aggregate grain and the cement, cu, is perpendicular to the aggregate grain surface 
(radial to the sphere). To determine the plastic stress resistance, an equation from Walraven [5] is used (see 
Eq.(1)). No local shear stresses or friction are considered at the surface of the grains because of the roughness on 
the grain surface is assumed to be small and cement matrix is being destroyed (crushed) during the sliding 
process. 

 0.56 26.39 [ / ]cu ccf N mm    (1)  

     
Fig.4 – Aggregate grain contact area   Fig.5 –Aggregate grain size distribution 

The size of the contact surface depends on the diameter, d, of the grain, the sliding displacement, uslid, and 
the crack width, w. Point M is the center of the aggregate grain in its location after sliding, and point M' is the 
center of the aggregate in its initial location. Then, uslid is the horizontal distance between M and M'. The contact 
sector is between the angles 1 and 2. The first slip is assumed to occurs without contact between the aggregate 
grain and the cement matrix. Then, the aggregate grains with the largest diameter touch the cement matrix. For 
standard concrete, the compression strength of the aggregates is higher than that of the cement matrix. Because 
of this, the aggregate grains locally destroy the cement matrix. This leads to sliding displacements, but not 
automatically to a reduction of the sliding resistance. On the contrary, larger sliding displacements activate the 
smaller aggregate grains, which add to the sliding resistance.  

For a single perfectly spherical grain loaded with a uniform radial stress, cu, distributed along the contact 
sector between angles 1 and 2 and spanning the half of the sphere in contact with the cement paste the resultant 
shear force, Vagg, is calculated using Eq. (2) and the resultant normal force, Nagg, is calculated using Eq.(3). Each 
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equation is divided into two parts. The first part is the integration of the stresses to a resultant stress per circle 
section. This value is multiplied with the second part (di)/4 to get the forces for a cylindrical grain that has the 
same area projected onto the crack surface as a spherical grain (see Fig.6). This assumption considers that half of 
the sphere is in contact with the cement between the angles 1 and 2 (Fig. 4).  
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Fig.6 –View of the spherical and cylindrical grain projection onto the crack surface 

The shear and the normal stresses transferred by each aggregate grain to the horizontal crack surface are 
modeled by dividing the grain forces Vagg and Nagg by the average area, Aagg, of the aggregate grain that crosses 
the horizontal crack surface.  
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2.1.1 Crack Roughness and Aggregate Grain Size Distribution 

The roughness of the crack is quantified using the aggregate grain size distribution in concrete. In the DIN 1045-
2 [6], the aggregate grains size distributions A16, B16, and C16 separate the spectrum into four groups: fine, fine 
to medium, medium to coarse, and coarse (see Fig. 5). The solid line shows the grain size distribution that was 
used for the compact sliding specimens made in this study. This distribution is partially classified as coarse to 
medium, and partially as medium to fine. In the sliding model, the grain size distribution in the volume is 
considered to be equal to the distribution on the crack surface. Furthermore, the center of each grain is positioned 
at the surface of the crack (see Fig.4).  
 

The contribution of each aggregate grain size to the stresses at the crack surface is computed separately 
and then summed together.  For the concrete used in this study, the aggregate grain size diameter, di, were 16 
mm, 8 mm, 4 mm, 2 mm, 1 mm, 0.5 mm, 0.25 mm, and 0.125 mm. Larger grain sizes (e.g. 32 mm) can be added 
to the model if they are present in the concrete. The transformation to a step-wise grain size distribution is done 
by dividing each aggregate fraction in two sizes. For example, the fraction between 8mm and 16mm is divided in 
one half of 8mm and one half of 16mm grains. i is the fraction of each aggregate size in the total volume (see 
Fig.5).  
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2.1.2 Damage Evolution 

The aggregate interlock effect degrades with increasing displacements. Each aggregate grain destroys the cement 
matrix in its contact zone and produces a lane in the sliding direction. However, the length of each lane is limited 
by the distance between the grains of the same size. Furthermore, the concrete cover and large parts of concrete 
between the reinforcement bars spall. Thus, a simplified damage evolution model Di, a function of the sliding 
displacement, uslid,I, is shown in Fig.7. This model is valid for each aggregate size for both the normal and the 
shear stresses at the crack (Eq. 4 and 5). The displacement, uslid,i, is the sliding displacement of each aggregate 
size since the first contact, while uslid is total differential sliding displacement between the two crack planes. It is 
assumed that the degradation starts when uslid,start,i = 0.5di and ends when uslid,end,i = 3.0di (see Fig.7).  

Furthermore, the size of the initial crack width, w0, affects the sliding resistance. Small aggregates do not 
participate in the aggregate interlock effect if the initial crack width is too large. This happens because 
aggregates with larger diameters destroy the sliding lanes of the smaller aggregates before they can interlock. 
Therefore, the aggregates with diameters smaller than half of the initial crack width are not considered.  

 
Fig.7 – Damage evolution along the sliding surface 

The damage evolution law is applied for each aggregate grain size separately according to the following rule: 
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The shear stress and the normal stress are considered to degrade in proportion to the damage. The resulting 
vertical and horizontal forces on the crack area, Ac, which are transferred by aggregate interlock, are modeled 

using Eq.(7) and Eq.(8), where ,c i and ,c i  are the stresses on the undamaged crack surface. nd is the number of 

aggregate grain sizes, and i is the fraction of the quantity of grain size, di, relative to the total. The factor, k, 
considers the ratio of the volume of the aggregates to the total volume of the concrete. The volume portions of 
the cement and the water do not contribute to the roughness at the crack. This ratio depends on many factors, but 
typical values are between 0.7 and 0.8. Here, the factor k is assumed to be 0.78.    
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2.2 Deflection Model of the Reinforcement 

The deflection model for the reinforcement bars crossing the crack is based on the assumption that the flexural 
stiffness of a reinforcement bar is small compared to its axial stiffness. Thus the flexural stiffness is neglected in 
this model. The second assumption is that the concrete enters a plastic response range when the reinforcement is 
laterally compressed into it. In Fig.8, this principle is applied to model the deflection of the reinforcement bars at 
the crack. Sliding displacements between two rigid concrete bodies forces the reinforcement to deform in double 
curvature (Fig.2). Only the bottom portion of the bar is shown in Fig. 8. This model considers that the 
reinforcement bars bend into an arc to match the sliding displacements along the crack (circular arc portion). At 
larger displacements, the concrete at the crack surface partially fails as a consequence of the indentation of the 
reinforcement into the concrete. The reinforcement bar above the crack is straight by inclined and is not 
supported by the concrete (inclined portion). The bottom section the reinforcement bar is straight, (straight 
portion). The change of the length of the reinforcement bar, which is controlled by the crack width and the radius 
of the arc, induces  axial forces in the reinforcement bar. 

 
Fig.8 – Deflection model of the half of the reinforcement bar beneath the crack surface 

Barlow’s formula, given in Eq.(9), is applied to the curved section of the reinforcing bar. Namely, F/u=R, the 
longitudinal force divided by the distributed deflection force, u, gives the radius R of the circular arc of the bar. 
To simplify, it is assumed that the radius does not change during the sliding process. The yield force, Fy, of the 
reinforcement is inserted into Eq. (9) to ensures that the yield limit of the reinforcement bars is reached. The 
plastic distributed load, upl, is calculated in Eq.(10). The maximum plastic bearing stress of the concrete, c,pl, is 
defined in Eq.(11). This assumption for the bearing strength is consistent with Souroushian [7] and Dulacska [8], 
where values between 1.2 and 3 times the uniaxial compression strength of the concrete are suggested. 
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 /y plR F u   (9) 

 ,pl c pl su d    (10) 

 , 4.0c pl cf     (11) 

The angle of the circular arc portion of the reinforcement, , is equal to the inclination of the reinforcement bar 
at the crack. The angle, , and the radius, R, define the transversal displacement of the concrete in the curved 
portion of the bar, ur, see Eq.(12). This displacement is limited by ur,max (see Eq.(13)). The maximum 
displacement depends on the empirical assumption of Soroushian [7]. It describes the bearing stiffness of the 
concrete at a dowelled reinforcement bar.  

 ,r r maxu R R cos u      (12) 
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When the maximum displacement, ur,max, is reached, the concrete fails locally. The reinforcement can freely 
deform in the inclined portion without any force transfer to the concrete. The sliding displacement consists of the 
curved portion displacement, ur, and the inclined portion displacement, uincl. In this model, uslid, is an input 
parameter. Then Eq.(14) is solved for  and uincl. Both parameters define the geometry of the reinforcement. 
 2 ( )slid incl ru u u      (14) 

The total length, ltot, which is defined in Eq.(15), is the sum of the reinforcement bar lengths in the straight, 
curved, inclined portions, and the crack widths. lstraight is calculated in Eq.(16), and the length of reinforcement in 
the curved portion of the bar lt is analysed in Eq.(17). The height of the inclined portion of the bar, lincl, is 
determined in Eq.(18). The crack width, w, is also taken into account, see Eq.(19). This includes the initial crack 
width, w0, from prior load stages, which remains because of plastic elongation and the change of the crack 
widths, w. If the crack opens or closes, the length of the reinforcement changes, and this can result in positive 
or negative strain. 
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The length, lstraight, depends on the minimal crack space, ls,min, defined in Eq.(20), which is the half of the 
maximum crack space (see Eq.(21)). This length is calibrated using the data from the conducted sliding tests to 
obtain a good match of the change of the crack widths. The bond strength for the calculation of the maximum 
crack space is taken from the CEB-FIB Model Code 90 [9]. 
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The strain analysis is shown in Eq.(22), with the simplification that the bond stress does not reduce the 
longitudinal stress in the bar. This means that the strain inside the reinforcement is constant over the length ltot. 

 ,

,

tot s min
s

s min

l l

l


   (22) 

The longitudinal stress-strain behaviour of the reinforcement is defined using a linear-plastic material law with 
the elastic modulus, Es, the yielding strength, fy, and the ultimate strain u. The axial force of all reinforcement 
bars, Fs, is calculated from the Eq.(23). Subsequently the force is decomposed into a force normal to the crack 
plane, Fs,z, and a force parallel to the crack plan, Fs,x, (see Eq.(24) and Eq.(25) 4.29). The reinforcement forces 
depend on the sliding displacement, uslid, and are solved for the crack width, w. 
 
 ( )s s s sF A    (23) 

 , ( , ) ( , )s x slid s sF u w F w sin n      (24) 

 , ( , ) ( , )s z slid s sF u w F w cos n      (25) 

Fig.9 shows the reinforcement bar deflection process under increasing sliding displacements with constant crack 
widths. In phase 0, no sliding displacements exist. The elastic strain in the reinforcement bar is zero. The plastic 
strain results from a crack opening that elongates the bar into its plastic range. In phase 1a, with small transverse 
displacements, the inclination angle  is small as is the curved portion of the bar. In phase 1b, the inclination 
angle increases to remain compatible with the increasing sliding displacements. During this process, the 
reinforcement bar deforms into the concrete. In phase 2, the maximum bearing displacement is, ur,max, is reached. 
The concrete starts to partially fail, and the midpoints of the curved sections move away from the crack. As the 
displacement process proceeds further, the reinforcement can yield. In all phases, the strain of the reinforcement 
is calculated, by Eq.(22). The reinforcement bar transfers axial forces and no shear forces at its local coordinate 
system. This means that dowel action is neglected. However, due to the inclination of the bars, shear forces are 
transferred to the crack plane. The equilibrium of the reinforcement bar axial force, Fs, with components Fs,x and 
Fs,z, is equilibrated by the concrete Fr (see Fig.8) with components Fr,x and Fr,z. The horizontal equilibrium is 
achieved when Fs,x = Fr,x, and the vertical equilibrium is achieved when Fs = Fr,z + Fs,z. 
 

 
Fig.9 – Deflection process 
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2.3 Solving the Sliding Force-Displacement Relationship 

An input parameter for the sliding model is the angle of the compression strut, , in the wall (see Fig.3). This 
angle can vary between 0° and 90°. The angle  determines the ratio between the external normal force, Fz, and 
the shear force, Fx, and thereby the direction of the resultant force, which is transferred across the crack (see 
Eq.(26)). 

 
( , )

( , )
z slid

x slid

F u w
tan

F u w
    (26) 

The external forces are in equilibrium with the internal forces (concrete and reinforcement) in each direction. 
This leads to Eq.(27) and Eq.(28). 
 , ,( , ) ( , )z c z slid s z slidF F u w F u w    (27) 

 , ,( , ) ( , )x c x slid s x slidF F u w F u w    (28) 

The deflection model of the reinforcement and the aggregate interlock model for the concrete depend on the 
displacement, uslid, and the crack width, w. To solve Eq.(27) and Eq.(28) for the shear-force sliding relation, 
Eq.(26) is used. The angle, , is predefined to solve Eq.(26) for w. If w is known for the deformation state, uslid, 
the forces of the concrete (Fc,x, Fc,z), and the reinforcement (Fs,x, Fs,z) are calculated. This procedure is repeated in 
every sliding displacement step, uslid. The load history of the reinforcement is considered. 

3. Calibration  

The sliding model is calibrated using the data from the experiments conducted in this project [10].  Most of tests 
were conducted cyclically. It was shown that the monotonic load-displacement response curve is an envelope 
function for the cyclic response graph. Thus, the model is calibrated to the monotonically tested specimens out 
of the core group, PK05 and PK11. For calibration of the sliding model the following parameters are set:  

- damage evolution law, uslid,start,i = 0.5di, uslid,end,i = 3.0di (see Fig.7);  
- maximum compression bearing strength of the reinforcement, c,pl = 4.0fc (see Eq.(11)); 
- considered crack space, ls,min = 0.5ls,max (see Eq.(20)). 

These parameters are varied in Fig.10. The black solid line shows the response of the sliding model using the 
above chosen parameters.  

The empirical damage evolution law is part of the aggregate interlock model and describes the post peak 
behaviour (see Fig.7). In Fig.10, the damage evolution law is also varied. The response when the damage 
evolution law starts to degrade at uslid,start,i = 1.0di, and ends at uslid,end,i = 6.0di  is plotted using a blue dashed line. 
The response when the damage evolution law starts to degrade at uslid,start,i = 0.25di, and ends at uslid,end,i = 1.5di is 
plotted as a blue dot-dashed line. The sliding shear stress-displacement relationship is significantly affected by 
this law. A delayed degradation process leads to a higher maximum resistance, and the maximum resistance is 
reached at a larger sliding displacement. The opposite is the case for an earlier starting and an earlier ending 
degradation process: it leads to lower shear stresses at smaller sliding displacements.  The influence on the 
change of the crack width is negligible (see Fig.10). 

The maximum compression bearing strength of the reinforcement, which is defined in Eq.(11), influences 
the force-deformation behaviour of the reinforcement. In this study c,pl is varied between 3.0fc and 5.0fc. The 
comparison of the different green-line plots shows that an increase of the bearing stress leads to an increase of 
the shear stresses. The reason is the different crack closure processes. An increase of the bearing strength 
reduces the radius of the curved portion of the reinforcement bar. At the same sliding displacement, the 
reinforcement with a larger plastic bearing strength lengthens more, and this produces higher clamping forces. 
To fulfill the force equilibrium, the crack closes (see Fig.10), and thus increases the aggregate interlock effect. 
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The crack space considered is varied between ls,min = 0.25ls,max  and ls,min = 1.00ls,max. The influence of the 
considered crack space is very small (see the red lines). With a smaller length, the shear stresses are larger. This 
results from the crack closure process that differs during the first 10 mm of sliding displacement. The sliding 
model with the chosen parameters closely matches the measured results of PK05 and PK11. 

 
 

   
 

Fig.10 – Calibration of the sliding model against specimens PK05 and PK11, ρs=0.85%, w0=1.28mm, ds=8mm 

4. Validation  

The sliding model is validated using data from specimens PK09, PK10, PK17, PK18, PK21, and PK22 [10]. 
These tests are conducted in the same test setup used for specimens PK05 and PK11, which were used to 
calibrate of the model. These specimens differ in their reinforcement ratios, ρs, and their initial crack width, w0. 
Furthermore, these tests are conducted using a cyclic load sequence, while the sliding model describes a 
monotonic sliding shear stress-displacement relationship across a crack. 

The reinforcement ratio, s=1.13%, of the specimens PK17 and PK18 is larger compared to that of the 
core group, s=0.85%. The higher reinforcement ratio leads to a faster crack closure process. Because of this, the 
sliding resistance of the model, τslid=6.7 N/mm², is reached at uslid=6 mm, this equal to the measured average 
maximum shear resistance for PK17 and PK18. Overall Fig.11 shows a good match between the tests and the 
model. 
 The load-displacement behaviour of specimens PK21 and PK22, with a lower reinforcement ratio, 
s=0.47%, also show good agreement with the predictions of the sliding model (see Fig.12). The sliding model 
predicts a sliding resistance of τslid=5.7 N/mm² at uslid=9 mm, and the specimens reached their maximum 
resistance, τslid=6.7 N/mm², at uslid=10 mm.  

The specimens PK09 and PK10 were initially cracked with a crack width of 1.0 mm. After load removal, 
an average crack width of 0.35mm remained. The reinforcement ratio is s=0.85%. The sliding resistance of the 
model is 9.1 N/mm², while the average maximum sliding shear stress is 9.85N/mm². The measured load-
deformation behaviour is similar to the predicted one. In Fig.13, the plots of the specimens and the model 
response show the same characteristics. Overall, the sliding model can predict the load-deformation behaviour of 
the compact sliding specimens with acceptable accuracy.   
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Fig.11 – Sliding model prediction of the response of specimens PK17 and PK18, ρs=1.13%, w0=1.13mm, 
ds=8mm 

         

Fig.12 – Sliding model prediction of the response of specimens PK21 and PK22, ρs=0.47%, w0=1.38mm, 
ds=6mm 

 

Fig.13 – Sliding model prediction of the response of specimens PK09 and PK10, ρs=0.85%, w0=0.35mm, 
ds=8mm 
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5. Conclusion 

The sliding model proposed in this study comprises two parts, the aggregate interlock mechanism of the concrete 
and the deformation mechanism of the reinforcement. The aggregate interlock part depends mainly on the 
roughness of the crack surface and the concrete strength. The force transfer of the reinforcement depends mainly 
on the reinforcement ratio, s, and the diameter of the reinforcement bars, ds. Both parts contribute to the shear 
and axial force transfer across the crack. They are related through the compatibility of deformations, the sliding 
displacement, uslid, and the crack width, w. The angle of the resultant wall compression strut, , is predefined. 
Then, the equilibrium of forces for the crack width, w, is solved for each increment of the sliding displacement.  
 The model is calibrated using response data from the monotonically tested compact sliding specimens, 
PK05 and PK11 and validated using the response data from the cyclically tested specimens with different 
reinforcement ratios and different initial crack widths. The load-deformation response predicted using the sliding 
model matches the test results well. The results of the model and the tests are strongly influenced by the initial 
crack width, w, while the influence of the reinforcement on the sliding response is small.  
 The next step of the research project incorporates the sliding model into a model of a wall to predict the 
load-deformation behaviour of squat shear walls including the sliding on the bottom flexural crack.  
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